#include "mat_mul.h" #include #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 int num_devices = 4; #define TS 32 #define WPT 16 #define RTSF (TS/WPT) //int MM; //int KK; //int NN; // A: M x K // B: K x N // C: M x N __global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) { //int i = blockDim.x * blockIdx.x + threadIdx.x; //int j = blockDim.y * blockIdx.y + threadIdx.y; int row = threadIdx.x; int col = threadIdx.y; int globalRow = (blockDim.x * WPT) * blockIdx.x + threadIdx.x; int globalCol = blockDim.y * blockIdx.y + threadIdx.y; //f (i >= M || j >= N) // return; __shared__ float Asub[TS][TS]; __shared__ float Bsub[TS][TS]; float acc[WPT]; for(int w=0;w= M || tiledCol >= K) { Asub[row+w*RTSF][col]=0.0f; } else { Asub[row+w*RTSF][col]=A[(globalRow+w*RTSF)*K+tiledCol]; } if(tiledRow + w*RTSF >= K || globalCol >= N) { Bsub[row+w*RTSF][col]=0.0f; } else { Bsub[row+w*RTSF][col]=B[(tiledRow+w*RTSF)*N+globalCol]; } } __syncthreads(); for (int k = 0; k < TS; k++) { for(int w=0;w= M || globalCol >= N) continue; C[(globalRow+w*RTSF)*N+globalCol]=acc[w]; } } // Array of device (GPU) pointers static float *a_d[MAX_NUM_GPU]; static float *b_d[MAX_NUM_GPU]; static float *c_d[MAX_NUM_GPU]; static int M, N, K; static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU]; void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) { // printf("M: %d, K: %d, N: %d\n",M, K, N); //printf("MM: %d, KK: %d, NN: %d\n",MM, KK, NN); // Launch kernel on every GPU for (int i = 0; i < num_devices; i++) { //dim3 blockDim(1, 1, 1); //dim3 gridDim(Mend[i] - Mbegin[i], N, 1); dim3 blockDim(TS/WPT, TS, 1); dim3 gridDim(((Mend[i] - Mbegin[i] + TS-1)/TS), (N+TS-1)/TS, 1); CUDA_CALL( cudaSetDevice(i) ); // if(K%TS==0&&K==N) // sgemmO<<>>(a_d[i], b_d[i], c_d[i], Mend[i] - Mbegin[i], N, K); // else // sgemm<<>>(a_d[i], b_d[i], c_d[i], Mend[i] - Mbegin[i], N, K); sgemm<<>>(a_d[i], b_d[i], c_d[i], Mend[i] - Mbegin[i], N, K); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) { M = _M, N = _N, K = _K; CUDA_CALL( cudaGetDeviceCount(&num_devices) ); printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // // Setup problem size for each GPU // if(M%8) MM=(((M/8)+1)*8); // else MM=M; // if(K%8) KK=(((K/8)+1)*8); // else KK=K; // if(N%8) NN=(((N/8)+1)*8); // else NN=N; for (int i = 0; i < num_devices; i++) { Mbegin[i] = (M / num_devices) * i; Mend[i] = (M / num_devices) * (i + 1); } Mend[num_devices - 1] = M; // for (int i = 0; i < num_devices; i++) { // Mbegin[i] = (MM / num_devices) * i; // Mend[i] = (MM / num_devices) * (i + 1); // } // Mend[num_devices - 1] = MM; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) ); CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) ); CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) ); //CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * KK * sizeof(float)) ); //CUDA_CALL( cudaMalloc(&b_d[i], KK * NN * sizeof(float)) ); //CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * NN * sizeof(float)) ); } // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K, (Mend[i] - Mbegin[i]) * K * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) { // Do any post-matmul cleanup work here. // Download C matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float), cudaMemcpyDeviceToHost) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } }