#include "convolution.h" #include #include #include #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 #define TS 1 int num_devices[2] = {0,0}; __global__ void conv(float *input, float *filter, float *output, int N, int C, int H, int W, int K, int R, int S, int pad, int dilation, int stride) { int OH = (H + 2 * pad - dilation * (R-1) - 1) / stride + 1; int OW = (W + 2 * pad - dilation * (S-1) - 1) / stride + 1; int n = blockIdx.x; int k = blockIdx.y; int oh = blockIdx.z; int ow = threadIdx.x; if(n >= N || k >= K || oh >= OH || ow >= OW ) return; // __syncthreads(); float tmp = 0.0f; for(int c = 0; c < C; c++){ for(int r = 0; r < R; r++){ for(int s = 0; s < S; s++){ int h = oh * stride - pad + r * dilation; int w = ow * stride - pad + s * dilation; if( h < 0 || h >= H || w < 0 || w >= W ) continue; float i = input[n* C * H * W + c * H * W + h * W + w]; float f = filter[k* C * R * S + c * R * S + r * S + s]; tmp += i * f; } } } // __syncthreads(); output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = tmp; } // Array of device (GPU) pointers static float *a1_d[MAX_NUM_GPU]; static float *a2_d[MAX_NUM_GPU]; static float *b1_d[MAX_NUM_GPU]; static float *b2_d[MAX_NUM_GPU]; static float *c1_d[MAX_NUM_GPU]; static float *c2_d[MAX_NUM_GPU]; static int Mbegin1[MAX_NUM_GPU], Mend1[MAX_NUM_GPU]; static int Mbegin2[MAX_NUM_GPU], Mend2[MAX_NUM_GPU]; static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; int portion, low_bound, upper_bound; MPI_Status status; MPI_Request request; void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { input = _input; output = _output; filter = _filter; N = _N, C = _C, H = _H, W = _W; K = _K, R = _R, S = _S; pad = _pad, dilation = _dilation, stride = _stride; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; size_t bytes_nchw = N*C*H*W*sizeof(float); size_t bytes_kcrs = K*C*R*S*sizeof(float); if (mpi_rank == 0) { portion = (N / mpi_world_size); for(int i=1; i < mpi_world_size; i++){ low_bound = i*portion; if( ((i+1)==mpi_world_size) && (( N % mpi_world_size) != 0 ) ){ upper_bound = N; } else{ upper_bound = low_bound + portion; } MPI_Isend(&low_bound, 1, MPI_INT, i, 1, MPI_COMM_WORLD, &request); MPI_Isend(&upper_bound, 1, MPI_INT, i, 2, MPI_COMM_WORLD, &request); MPI_Isend(&input[low_bound*C*H*W], ( (upper_bound - low_bound)*C*H*W ), MPI_FLOAT, i, 3, MPI_COMM_WORLD, &request); MPI_Isend(&filter[0], (K*C*R*S), MPI_FLOAT, i, 4, MPI_COMM_WORLD, &request); } low_bound = 0; upper_bound = portion; int n = ((upper_bound-low_bound)/TS)*TS; // Setup problem size for each GPU for (int i = 0; i < num_devices[0]; i++) { Mbegin1[i] = (n / num_devices[0]) * i + low_bound; Mend1[i] = (n / num_devices[0]) * (i + 1) + low_bound; } Mend1[num_devices[0] - 1] = n + low_bound; // Upload A and B matrix to every GPU for (int i = 0; i < num_devices[0]; i++) { CUDA_CALL( cudaMemcpy(a1_d[i], input + Mbegin1[i] * C * H * W , (Mend1[i] - Mbegin1[i]) * C * H * W * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(b1_d[i], filter, K * C * R * S * sizeof(float), cudaMemcpyHostToDevice) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices[0]; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } // Launch kernel on every GPU for (int i = 0; i < num_devices[0]; i++) { dim3 gridDim( Mend1[i] - Mbegin1[i] , K , OH); dim3 blockDim(OW, 1); CUDA_CALL( cudaSetDevice(i) ); conv<<>>(a1_d[i], b1_d[i], c1_d[i], Mend1[i]-Mbegin1[i], C, H, W , K , R ,S ,pad,dilation, stride ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices[0]; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } } // mpi_rank == 0 else{ MPI_Recv(&low_bound, 1, MPI_INT, 0, 1, MPI_COMM_WORLD, &status); MPI_Recv(&upper_bound, 1, MPI_INT, 0, 2, MPI_COMM_WORLD, &status); input = (float*)malloc(bytes_nchw); filter = (float*)malloc(bytes_kcrs); MPI_Recv(&input[low_bound*C*H*W], ( (upper_bound - low_bound)*C*H*W ), MPI_FLOAT, 0, 3, MPI_COMM_WORLD, &status); MPI_Recv(&filter[0], (K*C*R*S ), MPI_FLOAT, 0, 4, MPI_COMM_WORLD, &status); int n2 = ((upper_bound-low_bound)/TS)*TS; // Setup problem size for each GPU for (int i = 0; i < num_devices[1]; i++) { Mbegin2[i] = (n2 / num_devices[1]) * i; Mend2[i] = (n2 / num_devices[1]) * (i + 1); } Mend2[num_devices[1] - 1] = n2; // // Upload A and B matrix to every GPU for (int i = 0; i < num_devices[1]; i++) { CUDA_CALL( cudaMemcpy(a2_d[i], input + (Mbegin2[i] + low_bound )* C * H * W , (Mend2[i] - Mbegin2[i]) * C * H * W * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(b2_d[i], filter, K * C * R * S * sizeof(float), cudaMemcpyHostToDevice) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices[1]; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } // Launch kernel on every GPU for (int i = 0; i < num_devices[1]; i++) { dim3 gridDim( Mend2[i] - Mbegin2[i] , K , OH); dim3 blockDim(OW, 1); CUDA_CALL( cudaSetDevice(i) ); conv<<>>(a2_d[i], b2_d[i], c2_d[i], Mend2[i]-Mbegin2[i], C, H, W , K , R ,S,pad,dilation, stride ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices[1]; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } free(input); free(filter); } } // void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; size_t bytes_nchw = N*C*H*W*sizeof(float); size_t bytes_kcrs = K*C*R*S*sizeof(float); MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); if (mpi_rank == 0) { portion = (N / mpi_world_size); for(int i=1; i < mpi_world_size; i++){ low_bound = i*portion; if( ((i+1)==mpi_world_size) && (( N % mpi_world_size) != 0 ) ){ upper_bound = N; } else{ upper_bound = low_bound + portion; } MPI_Isend(&low_bound, 1, MPI_INT, i, 1, MPI_COMM_WORLD, &request); MPI_Isend(&upper_bound, 1, MPI_INT, i, 2, MPI_COMM_WORLD, &request); } low_bound = 0; upper_bound = portion; int n = ((upper_bound-low_bound)/TS)*TS; CUDA_CALL( cudaGetDeviceCount(&num_devices[0]) ); printf("1:Using %d devices\n", num_devices[0]); for (int i = 0; i < num_devices[0]; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[1:GPU %d] %s\n", i, prop.name); } if (num_devices[0] <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each GPU for (int i = 0; i < num_devices[0]; i++) { Mbegin1[i] = (n / num_devices[0]) * i + low_bound; Mend1[i] = (n / num_devices[0]) * (i + 1) + low_bound; } Mend1[num_devices[0] - 1] = n + low_bound; // Allocate device memory for each GPU for (int i = 0; i < num_devices[0]; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&a1_d[i], (Mend1[i] - Mbegin1[i]) * C * H * W * sizeof(float)) ); CUDA_CALL( cudaMalloc(&b1_d[i], K * C * R * S * sizeof(float)) ); CUDA_CALL( cudaMalloc(&c1_d[i], (Mend1[i] - Mbegin1[i]) * K * OH * OW * sizeof(float)) ); } // } else{ MPI_Recv(&low_bound, 1, MPI_INT, 0, 1, MPI_COMM_WORLD, &status); MPI_Recv(&upper_bound, 1, MPI_INT, 0, 2, MPI_COMM_WORLD, &status); // int n2 = ((upper_bound-low_bound)/TS)*TS; CUDA_CALL( cudaGetDeviceCount(&num_devices[1]) ); printf("2:Using %d devices\n", num_devices[1]); for (int i = 0; i < num_devices[1]; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); printf("[2:GPU %d] %s\n", i, prop.name); } if (num_devices[1] <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each GPU for (int i = 0; i < num_devices[1]; i++) { Mbegin2[i] = (n2 / num_devices[1]) * i; Mend2[i] = (n2 / num_devices[1]) * (i + 1); } Mend2[num_devices[1] - 1] = n2; // Allocate device memory for each GPU for (int i = 0; i < num_devices[1]; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&a2_d[i], (Mend2[i] - Mbegin2[i]) * C * H * W * sizeof(float)) ); CUDA_CALL( cudaMalloc(&b2_d[i], K * C * R * S * sizeof(float)) ); CUDA_CALL( cudaMalloc(&c2_d[i], (Mend2[i] - Mbegin2[i]) * K * OH * OW * sizeof(float)) ); } // } // else } // void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; size_t bytes_nkohow = N*K*OH*OW*sizeof(float); if (mpi_rank == 0) { for(int i = 1; i < mpi_world_size; i++){ MPI_Recv(&low_bound, 1, MPI_INT, i, 4, MPI_COMM_WORLD, &status); MPI_Recv(&upper_bound, 1, MPI_INT, i, 5, MPI_COMM_WORLD, &status); MPI_Recv(&output[low_bound*K*OH*OW], ( (upper_bound - low_bound)*K*OH*OW ), MPI_FLOAT, i, 6, MPI_COMM_WORLD, &status); } for (int i = 0; i < num_devices[0]; i++) { CUDA_CALL( cudaMemcpy( output + Mbegin1[i] * K * OH * OW , c1_d[i], (Mend1[i] - Mbegin1[i]) * K * OH * OW * sizeof(float), cudaMemcpyDeviceToHost) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices[0]; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } } else{ output = (float*)malloc(bytes_nkohow); for (int i = 0; i < num_devices[1]; i++) { CUDA_CALL( cudaMemcpy( output + (Mbegin2[i] + low_bound) * K * OH * OW , c2_d[i], (Mend2[i] - Mbegin2[i]) * K * OH * OW * sizeof(float), cudaMemcpyDeviceToHost) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices[1]; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } MPI_Isend(&low_bound, 1, MPI_INT, 0, 4, MPI_COMM_WORLD, &request); MPI_Isend(&upper_bound, 1, MPI_INT, 0, 5, MPI_COMM_WORLD, &request); MPI_Isend(&output[low_bound*K*OH*OW], ( (upper_bound - low_bound)*K*OH*OW ), MPI_FLOAT, 0, 6, MPI_COMM_WORLD, &request); free(output); } }