#include "convolution.h" #include "util.h" #include #include #include #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 int num_devices = 0; static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; static int size[2]; __global__ void conv( float *input, float *output, float *filter, int N, int C, int H, int W, int K, int R, int S, int pad, int dilation, int stride) { int OH, OW; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; int n = blockIdx.x; int k = blockIdx.y; int oh = blockIdx.z; int ow = threadIdx.x; float o = 0.f; for (int c = 0; c < C; ++c) { for (int r = 0; r < R; ++r) { for (int s = 0; s < S; ++s) { int h = oh * stride - pad + r * dilation; int w = ow * stride - pad + s * dilation; if (h < 0 || h >= H || w < 0 || w >= W) continue; float i = input[n * C * H * W + c * H * W + h * W + w]; float f = filter[k * C * R * S + c * R * S + r * S + s]; o += i * f; } // s } // r } // c output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; } static float *input_d[MAX_NUM_GPU]; static float *output_d[MAX_NUM_GPU]; static float *filter_d[MAX_NUM_GPU]; static int Nbegin[MAX_NUM_GPU], Nend[MAX_NUM_GPU]; void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { MPI_Request request; MPI_Status status; input = _input; output = _output; filter = _filter; if(mpi_rank == 0 && mpi_world_size == 2) { MPI_Isend(&input[size[0]*C*H*W], size[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); MPI_Isend(filter, K*C*R*S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); } else if (mpi_world_size == 2) { alloc_tensor(&input, size[1], C, H, W); alloc_tensor(&output, size[1], K, OH, OW); alloc_tensor(&filter, K, C, R, S); MPI_Recv(input, size[1]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); MPI_Recv(filter, K*C*R*S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); } // Upload input and filter to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpyAsync(input_d[i], input + Nbegin[i]*C*H*W, (Nend[i] - Nbegin[i])*C*H*W*sizeof(float),cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpyAsync(filter_d[i], filter, K*C*R*S*sizeof(float), cudaMemcpyHostToDevice) ); } for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } for (int i = 0; i < num_devices; i++) { dim3 blockDim(OW,1); dim3 gridDim(Nend[i]-Nbegin[i],K,OH); CUDA_CALL ( cudaSetDevice(i) ); conv<<>>(input_d[i], output_d[i], filter_d[i], Nend[i]-Nbegin[i], C, H, W, K, R, S, pad, dilation, stride); } // Download output from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpyAsync(output + Nbegin[i] * K * OH * OW , output_d[i], (Nend[i] - Nbegin[i]) * K * OH * OW * sizeof(float), cudaMemcpyDeviceToHost) ); } for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } if (mpi_rank == 0 && mpi_world_size == 2) { MPI_Recv(&output[size[0]*K*OH*OW], size[1]*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status); } else if (mpi_world_size == 2) { MPI_Isend(output, size[1]*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request); } } void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); CUDA_CALL( cudaGetDeviceCount(&num_devices) ); printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each Node if (mpi_world_size == 2) size[1] = N / 2; else size[1] = 0; size[0] = N - size[1]; // Setup problem size for each GPU per Node if (mpi_rank == 1 && mpi_world_size == 2) { for (int i = 0; i < num_devices; i++) { Nbegin[i] = (size[1] / num_devices) * i; Nend[i] = (size[1] / num_devices) * (i + 1); } Nend[num_devices - 1] = size[1]; } else { // mpi_rank == 0 for (int i = 0; i < num_devices; i++) { Nbegin[i] = (size[0] / num_devices) * i; Nend[i] = (size[0] / num_devices) * (i + 1); } Nend[num_devices - 1] = size[0]; } OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&input_d[i], (Nend[i] - Nbegin[i])*C*H*W*sizeof(float)) ); CUDA_CALL( cudaMalloc(&output_d[i], (Nend[i] - Nbegin[i])*K*OH*OW*sizeof(float)) ); CUDA_CALL( cudaMalloc(&filter_d[i], K*C*R*S*sizeof(float)) ); } } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { }