#include "convolution.h" #include "util.h" #include #include #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define TS 8 #define MAX_NUM_GPU 4 static float *input, *output, *filter; static float *in_d[MAX_NUM_GPU], *out_d[MAX_NUM_GPU], *filter_d[MAX_NUM_GPU]; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; static int num_devices = 1; static int size_per_node[2]; static int N_per_gpu[MAX_NUM_GPU]; __global__ void conv( float *_input, float* _output, float* _filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { const int global_row = blockDim.x * blockIdx.x + threadIdx.x; const int global_col = blockDim.y * blockIdx.y + threadIdx.y; int OH, OW; OH = (_H + 2 * _pad - _dilation * (_R - 1) - 1) / _stride + 1; OW = (_W + 2 * _pad - _dilation * (_S - 1) - 1) / _stride + 1; int n,k,w; n = global_col / (_K * OW); k = (global_col -n *(_K*OW)) / OW; w = (global_col -n *(_K*OW))- k * OW; int col = w; int row = global_row; if (global_row >= OH || global_col >= _N*_K*OW) return; float o = 0.f; for (int c = 0; c < _C; ++c) { for (int r = 0; r < _R; ++r) { for (int s = 0; s < _S; ++s) { int h = row * _stride - _pad + r * _dilation; int w = col * _stride - _pad + s * _dilation; if (h < 0 || h >= _H || w < 0 || w >= _W) continue; float i = _input[n * _C * _H * _W + c * _H * _W + h * _W + w]; float f = _filter[k * _C * _R * _S + c * _R * _S + r * _S + s]; o += i * f; } } } _output[n * _K * OH * OW + k * OH * OW + row * OW + col] = o; } void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if (mpi_world_size == 2) { size_per_node[1] = _N / 2; } size_per_node[0] = _N - size_per_node[1]; if (size_per_node[mpi_rank] < MAX_NUM_GPU) { num_devices = size_per_node[mpi_rank]; for (int i = 0 ; i < size_per_node[mpi_rank] ; i++) { N_per_gpu[i] = 1; } } else { num_devices = MAX_NUM_GPU; int remain = size_per_node[mpi_rank] % MAX_NUM_GPU; int quot = size_per_node[mpi_rank] / MAX_NUM_GPU; for (int i = 0 ; i < MAX_NUM_GPU ; i++) { N_per_gpu[i] = quot; if (i < remain) { N_per_gpu[i]++; } } } for (int i = 0 ; i < num_devices ; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&in_d[i], N_per_gpu[i]*C*H*W*sizeof(float)) ); CUDA_CALL( cudaMalloc(&out_d[i], N_per_gpu[i]*K*OH*OW*sizeof(float)) ); CUDA_CALL( cudaMalloc(&filter_d[i], K*C*R*S*sizeof(float)) ); } } void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { int offset = 0; input = _input; output = _output; filter = _filter; MPI_Request request; MPI_Status status; if (mpi_rank == 0 && mpi_world_size == 2 && size_per_node[1] != 0) { MPI_Isend(&input[size_per_node[0]*C*H*W], size_per_node[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); MPI_Isend(filter, _K*_C*_R*_S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); if (size_per_node[mpi_rank] < MAX_NUM_GPU) { num_devices = size_per_node[mpi_rank]; } } else if (mpi_rank == 1 && size_per_node[mpi_rank] != 0) { alloc_tensor(&input, size_per_node[1], C, H, W); alloc_tensor(&output, size_per_node[1], K, OH, OW); alloc_tensor(&filter, _K, _C, _R, _S); MPI_Recv(input, size_per_node[1]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); MPI_Recv(filter, _K*_C*_R*_S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); if (size_per_node[mpi_rank] < MAX_NUM_GPU) { num_devices = size_per_node[mpi_rank]; } } offset = 0; for (int i = 0 ; i < num_devices ; i++) { CUDA_CALL( cudaMemcpy(in_d[i], input + offset, N_per_gpu[i]*C*H*W*sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(filter_d[i], filter, K*C*R*S*sizeof(float),cudaMemcpyHostToDevice) ); offset += N_per_gpu[i] * C * H * W; } for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } for (int i = 0; i < num_devices; i++) { dim3 gridDim((OH+TS-1)/TS, (N_per_gpu[i]*K*OW + TS - 1)/TS, 1); dim3 blockDim(TS, TS, 1); CUDA_CALL( cudaSetDevice(i) ); conv<<>>(in_d[i], out_d[i], filter_d[i], N_per_gpu[i], _C, _H, _W, _K, _R, _S, _pad, _dilation, _stride); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } offset = 0; for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMemcpy(output + offset, out_d[i], N_per_gpu[i]*K*OH*OW * sizeof(float), cudaMemcpyDeviceToHost) ); offset += N_per_gpu[i]*K*OH*OW; } for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); CUDA_CALL( cudaSetDevice(i) ); } if (mpi_rank == 0 && mpi_world_size == 2 && size_per_node[1] != 0) { MPI_Recv(&output[size_per_node[0]*K*OH*OW], size_per_node[1]*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status); } else if(mpi_rank == 1 && size_per_node[1] != 0){ MPI_Isend(output, size_per_node[1]*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request); } } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { }