#include "convolution.h" #include #include #include #include "util.h" #define MAX_NUM_GPU 4 #define TS 8 #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; int num_devices = 4; __global__ void conv( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { int OH, OW; const int globalRow = blockDim.x * blockIdx.x + threadIdx.x; const int globalCol = blockDim.y * blockIdx.y + threadIdx.y; OH = (_H + 2 * _pad - _dilation * (_R - 1) - 1) / _stride + 1; OW = (_W + 2 * _pad - _dilation * (_S - 1) - 1) / _stride + 1; int n,k,w; w = globalCol; n = w/(_K*OH); w = w - n*(_K*OW); k = w / OW; w = w - k * OH; int col = w; int row = globalRow; if(globalRow >= OH || globalCol >= _N*_K*OW) return; int start_row = row * _stride - _pad; int start_col = col * _stride - _pad; float o = 0.f; for (int c = 0; c < _C; ++c) { for (int r = 0; r < _R; ++r) { for (int s = 0; s < _S; ++s) { int h = start_row + r * _dilation; int w = start_col + s * _dilation; if (h < 0 || h >= _H || w < 0 || w >= _W) continue; float i = _input[n * _C * _H * _W + c * _H * _W + h * _W + w]; float f = _filter[k * _C * _R * _S + c * _R * _S + r * _S + s]; o += i * f; } } } _output[n * _K * OH * OW + k * OH * OW + row * OW + col] = o; // __syncthreads(); } static float *in_d[MAX_NUM_GPU]; static float *out_d[MAX_NUM_GPU]; static float *filter_d[MAX_NUM_GPU]; static int Nbegin[MAX_NUM_GPU], Nend[MAX_NUM_GPU]; void convolution(float* _input, float* _output, float* _filter, int _N, int _C, int _H, int _W, int _K, int _R, int _Rs, int _pad, int _dilation, int _stride){ int size[2]; MPI_Request request; MPI_Status status; if(mpi_world_size == 2) size[1] = _N/2; else size[1] = 0; size[0] = _N-size[1]; if (mpi_rank == 0 && mpi_world_size==2) { MPI_Isend(&_input[size[0] * _C * _H * _W], size[1] * _C * _H * _W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); MPI_Isend(_filter, _K*_C*_R*_Rs, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); } else if(mpi_world_size==2){ alloc_tensor(&_input, size[1], _C, _H, _W); alloc_tensor(&_output, size[1], _K, OH, OW); alloc_tensor(&_filter, _K, _C, _R, _Rs); MPI_Recv(_input, size[1]*_C*_H*_W, MPI_FLOAT, 0,0,MPI_COMM_WORLD, &status); MPI_Recv(_filter, _K*_C*_R*_Rs, MPI_FLOAT, 0,0, MPI_COMM_WORLD, &status); } // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(in_d[i], _input + (Nbegin[i]-size[1]*mpi_rank) * _C * _H * _W, (Nend[i]-Nbegin[i]) * _C * _H * _W * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(filter_d[i], _filter, _K * _C * _R * _Rs * sizeof(float), cudaMemcpyHostToDevice) ); } for(int i=0;i>>(in_d[i], out_d[i], filter_d[i], (Nend[i]-Nbegin[i]), _C, _H, _W, _K, _R, _Rs, _pad, _dilation, _stride); } for (int i = 0; i < num_devices; i++) { CUDA_CALL ( cudaMemcpy( _output+(Nbegin[i]-size[1]*mpi_rank)* _K * OH * OW, out_d[i], (Nend[i]-Nbegin[i]) * _K * OH * OW*sizeof(float), cudaMemcpyDeviceToHost)); } if(mpi_rank == 0 && mpi_world_size==2){ MPI_Recv(&_output[size[0]*_K*OH*OW], size[1]*_K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status); } else if(mpi_world_size==2){ MPI_Isend(_output, size[1]*_K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD,&request); } for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; CUDA_CALL( cudaGetDeviceCount(&num_devices) ); printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } if(mpi_rank==0){ for (int i = 0; i < num_devices; i++) { Nbegin[i] = (N / num_devices) * i/mpi_world_size; Nend[i] = (N / num_devices) * (i + 1)/mpi_world_size; } Nend[num_devices - 1] = N/mpi_world_size; } else { for(int i=0;i