#include "convolution.h" #include #include #include #include "util.h" #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 static float *input, *output, *filter; static float *in_d[MAX_NUM_GPU], *out_d[MAX_NUM_GPU], *fil_d[MAX_NUM_GPU]; static int N, C, H, W; static int K, R, S; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; static int num_devices = 1; static int mat_size[2]; static int NN[MAX_NUM_GPU]; static int OH, OW; #define TS 8 __global__ void conv( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { const int gr = blockDim.x * blockIdx.x + threadIdx.x; const int gc = blockDim.y * blockIdx.y + threadIdx.y; int OH = (_H + 2 * _pad - _dilation * (_R - 1) - 1) / _stride + 1; int OW = (_W + 2 * _pad - _dilation * (_S - 1) - 1) / _stride + 1; int n, k, w; w = gc; n = w / (_K * OW); w = w - n * (_K * OW); k = w / OW; w = w - k * OW; int col = w; int row = gr; if (gr >= OH || gc >= _N * _K * OW) return; int sr = row * _stride - _pad; int sc = col * _stride - _pad; float o = 0.0f; for (int c = 0; c < _C; ++c) { for (int r = 0; r < _R; ++r) { for (int s = 0; s < _S; ++s) { int h = sr + r * _dilation; int w = sc + s * _dilation; if (h < 0 || h >= _H || w < 0 || w >= _W) continue; float i = _input[ n*_C*_H*_W + c*_H*_W + h*_W + w]; float f = _filter[ k*_C*_R*_S + c*_R*_S + r*_S + s]; o += i * f; } } } _output[ n*_K*OH*OW + k*OH*OW + row*OW + col] = o; } void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { int offset = 0; MPI_Request request; MPI_Status status; input = _input; output = _output; filter = _filter; if (mpi_rank == 0 && mpi_world_size == 2 && mat_size[1] !=0) { MPI_Isend(&input[mat_size[0]*C*H*W], mat_size[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); MPI_Isend(filter, _K*_C*_R*_S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); if ( mat_size[mpi_rank] < MAX_NUM_GPU) { num_devices = mat_size[mpi_rank]; } } else if (mpi_rank == 1 && mat_size[mpi_rank] != 0) { alloc_tensor(&input, mat_size[1], C, H, W); alloc_tensor(&output, mat_size[1], K, OH, OW); alloc_tensor(&filter, _K, _C, _R, _S); MPI_Recv(input, mat_size[1]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); MPI_Recv(filter, _K*_C*_R*_S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); if ( mat_size[mpi_rank] < MAX_NUM_GPU) { num_devices = mat_size[mpi_rank]; } } offset = 0; for (int i=0; i>>(in_d[i], out_d[i], fil_d[i], NN[i], _C, _H, _W, _K, _R, _S, _pad, _dilation, _stride); } for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } offset = 0; for (int i=0; i 4) mat_size[1] = _N / 2; else mat_size[1] = 0; mat_size[0] = N - mat_size[1]; if (mat_size[mpi_rank] < MAX_NUM_GPU) { num_devices = mat_size[mpi_rank]; for (int i = 0; i < mat_size[mpi_rank]; i++) NN[i] = 1; }else{ num_devices = MAX_NUM_GPU; int quitient = mat_size[mpi_rank] / MAX_NUM_GPU; int remain = mat_size[mpi_rank] % MAX_NUM_GPU; for (int i = 0; i < MAX_NUM_GPU; i++) { NN[i] = quitient; if(i