#include "convolution.h" #include #include #include "util.h" static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; int num_threads = 120; void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { input = _input; output = _output; filter = _filter; int size[2]; MPI_Request request; MPI_Status status; if ( mpi_world_size ==2) size[1] = _N/2; //TBC else size[1] = 0; size[0] = N - size[1]; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if (mpi_rank == 0 && mpi_world_size ==2) { MPI_Isend(&input[size[0]*C*H*W], size[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); MPI_Isend(filter, K*C*R*S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); } else if(mpi_world_size ==2) { alloc_tensor(&input, size[1], C, H, W); alloc_tensor(&output, size[1], K, OH, OW); alloc_tensor(&filter, K, C, R, S); MPI_Recv(input, size[1]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); MPI_Recv(filter, K*C*R*S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); } float i[8]; float f[8]; //#pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic) //#pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic) #pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic) for (int oh = 0; oh < OH; ++oh) { for (int ow = 0; ow < OW; ++ow) { for (int n = 0; n < size[mpi_rank]; ++n) { for (int k = 0; k < K; ++k) { float o = 0.f; for (int c = 0; c < C; c=c+1) { for (int r = 0; r < R; ++r) { int h = oh * stride - pad + r * dilation; if (h < 0 || h >= H) continue; for (int s = 0; s < S; ++s) { int w = ow * stride - pad + s * dilation; if (w < 0 || w >= W) continue; float i = input[n * C * H * W + c * H * W + h * W + w]; float f = filter[k * C * R * S + c * R * S + r * S + s]; //i[0] = input[n * C * H * W + c * H * W + h * W + w]; //f[0] = filter[k * C * R * S + c * R * S + r * S + s]; //i[1] = input[n * C * H * W + (c+1) * H * W + h * W + w]; //f[1] = filter[k * C * R * S +(c+1) * R * S + r * S + s]; //i[2] = input[n * C * H * W + (c+2) * H * W + h * W + w]; //f[2] = filter[k * C * R * S +(c+2) * R * S + r * S + s]; //i[3] = input[n * C * H * W + (c+3) * H * W + h * W + w]; //f[3] = filter[k * C * R * S + (c+3) * R * S + r * S + s]; //i[4] = input[n * C * H * W + (c+4) * H * W + h * W + w]; //f[4] = filter[k * C * R * S + (c+4) * R * S + r * S + s]; //i[5] = input[n * C * H * W + (c+5) * H * W + h * W + w]; //f[5] = filter[k * C * R * S + (c+5) * R * S + r * S + s]; //i[6] = input[n * C * H * W + (c+6) * H * W + h * W + w]; //f[6] = filter[k * C * R * S + (c+6) * R * S + r * S + s]; //i[7] = input[n * C * H * W + (c+7) * H * W + h * W + w]; //f[7] = filter[k * C * R * S + (c+7) * R * S + r * S + s]; //o += i[0] * f[0] + i[1] * f[1] + i[2] * f[2] + i[3] * f[3] // + i[4] * f[4] + i[5] * f[5] + i[6] * f[6] + i[7] * f[7] ; o += i*f; }//s }//r }//c output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; }//ow }//oh }//k }//n if (mpi_rank == 0 && mpi_world_size ==2) { MPI_Recv(&output[size[0]*K*OH*OW], size[1]*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status); } else if(mpi_world_size ==2) { MPI_Isend(output, size[1]*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request); } } void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { }