#include "convolution.h" #include #include #include "util.h" #include #include #define MASTER 0 #define SLAVE 1 #define TS 8 #define MAX_NUM_GPU 4 #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; static int N_Size[MAX_NUM_GPU]; int num_devices = 1; // Array of device (GPU) pointers static float *in_d[MAX_NUM_GPU]; static float *out_d[MAX_NUM_GPU]; static float *fil_d[MAX_NUM_GPU]; //static int Nbegin[MAX_NUM_GPU], Nend[MAX_NUM_GPU]; __global__ void conv_kernel( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { const int globalRow = blockDim.x * blockIdx.x + threadIdx.x; const int globalCol = blockDim.y * blockIdx.y + threadIdx.y; int OH, OW; OH = (_H + 2 * _pad - _dilation * (_R - 1) - 1) / _stride + 1; OW = (_W + 2 * _pad - _dilation * (_S - 1) - 1) / _stride + 1; int n,k,w; w = globalCol; n = w / (_K * OW); w = w - n *(_K * OW); k = w / OW; w = w -k * OW; int col = w; int row = globalRow; if (globalRow >= OH || globalCol >= _N * _K * OW) return; int start_row = row * _stride - _pad; int start_col = col * _stride - _pad; float o = 0.f; for (int c = 0; c < _C; ++c) { for (int r = 0; r < _R; ++r) { for (int s = 0; s < _S; ++s) { int h = start_row + r * _dilation; int w = start_col + s * _dilation; if (h < 0 || h >= _H || w < 0 || w >= _W) continue; float i = _input [ (n * _C * _H * _W) + (c * _H * _W) + (h * _W) + w]; float f = _filter[ (k * _C * _R * _S) + (c * _R * _S) + (r * _S) + s]; o += i * f; } } } _output[n * _K * OH * OW + k * OH * OW + row * OW + col] = o; } void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; input = _input; output = _output; filter = _filter; MPI_Status status; MPI_Request request; int size[2]; int offset; if (mpi_world_size == 2 && N > 4) size[1] = N / 2; else size[1] = 0; size[0] = N - size[1]; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if(size[mpi_rank] < MAX_NUM_GPU) { num_devices = size[mpi_rank]; for (int i = 0; i >>(in_d[i], out_d[i], fil_d[i], N_Size[i], C, H, W, K, R, S, pad, dilation, stride); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } offset = 0; for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMemcpy(output + offset, out_d[i],N_Size[i]*K*OH*OW*sizeof(float),cudaMemcpyDeviceToHost)); offset += N_Size[i]*K*OH*OW; } for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } if (mpi_rank == 0 && mpi_world_size == 2 && size[1] !=0) { MPI_Recv(&output[size[0]*K*OH*OW], size[1]*K*OH*OW, MPI_FLOAT, SLAVE, 0, MPI_COMM_WORLD, &status); } else if(mpi_rank == 1 && size[1] !=0) { MPI_Isend(output, size[1]*K*OH*OW, MPI_FLOAT, MASTER, 0, MPI_COMM_WORLD, &request); } } void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); CUDA_CALL( cudaGetDeviceCount(&num_devices) ); printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { }