#include "convolution.h" #include #include #include #include "util.h" #define MAX_NODE (4) #define MAX_THREADS (80) #define MAX_NUM_GPU 4 #define TS 8 #define MATRIX_SEND_DATA_MSG_ID 1000 #define MATRIX_SEND_RESULT_MSG_ID 1001 #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; static int num_devices = 0; static int startN[MAX_NODE], endN[MAX_NODE]; static int Nbegin[MAX_NUM_GPU], Nend[MAX_NUM_GPU]; static float *input_d[MAX_NUM_GPU]; static float *filter_d[MAX_NUM_GPU]; static float *output_d[MAX_NUM_GPU]; __global__ void run_convolution( float *_input, float *_output, float* _filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _stride, int _pad, int _dilation) { int _OH = (_H + 2 * _pad - _dilation * (_R - 1) - 1) / _stride + 1; int _OW = (_W + 2 * _pad - _dilation * (_S - 1) - 1) / _stride + 1; int n = blockIdx.x; int k = blockIdx.y; int oh = blockIdx.z; int ow = threadIdx.x; float o = 0.0f; for (int c = 0; c < _C; c++) { for (int r = 0; r < _R; r++) { for (int s = 0; s < _S; s++) { int h = oh * _stride - _pad + r * _dilation; int w = ow * _stride - _pad + s * _dilation; if (h < 0 || h >= _H || w < 0 || w >= _W) continue; float i = _input[n*_C*_H*_W + c*_H*_W + h*_W + w]; float f = _filter[k*_C*_R*_S + c*_R*_S + r*_S + s]; o += i * f; } } } _output[n*_K*_OH*_OW + k*_OH*_OW + oh*_OW + ow] = o; } void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { int input_size, filter_size, output_size; int i, m_size, sizeN = 0; MPI_Status status; MPI_Request req1[MAX_NODE], req2[MAX_NODE], req3[MAX_NODE], req4[MAX_NODE]; input_size = C * H * W; filter_size = K * C * R * S; output_size = K * OH * OW; if (mpi_world_size <= mpi_rank) return; if (mpi_rank == 0) { input = _input; output = _output; filter = _filter; // Send Matrix Information for (i = 1; i < mpi_world_size; i++) { m_size = (endN[i] - startN[i]); MPI_Isend(&m_size, 1, MPI_INT, i, MATRIX_SEND_DATA_MSG_ID, MPI_COMM_WORLD, &req1[i]); MPI_Isend(&input[startN[i] * input_size], m_size * input_size, MPI_FLOAT, i, MATRIX_SEND_DATA_MSG_ID, MPI_COMM_WORLD, &req2[i]); MPI_Isend(&filter[0], filter_size, MPI_FLOAT, i, MATRIX_SEND_DATA_MSG_ID, MPI_COMM_WORLD, &req3[i]); } sizeN = endN[0]; for (i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(input_d[i], input + Nbegin[i] * input_size, (Nend[i] - Nbegin[i]) * input_size * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(filter_d[i], filter, filter_size * sizeof(float), cudaMemcpyHostToDevice) ); } // wait for sending for (i = 1; i < mpi_world_size; i++) { MPI_Wait(&req1[i], &status); MPI_Wait(&req2[i], &status); MPI_Wait(&req3[i], &status); } } else { MPI_Recv(&sizeN, 1, MPI_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD, &status); m_size = sizeN; MPI_Irecv(&input[0], m_size * input_size, MPI_FLOAT, 0, MPI_ANY_TAG, MPI_COMM_WORLD, &req2[0]); MPI_Irecv(&filter[0], filter_size, MPI_FLOAT, 0, MPI_ANY_TAG, MPI_COMM_WORLD, &req3[0]); // wait for receiving MPI_Wait(&req2[0], &status); MPI_Wait(&req3[0], &status); for (i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(input_d[i], input + Nbegin[i] * input_size, (Nend[i] - Nbegin[i]) * input_size * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(filter_d[i], filter, filter_size * sizeof(float), cudaMemcpyHostToDevice) ); } } for (int i = 0; i < num_devices; i++) { m_size = (Nend[i] - Nbegin[i]); CUDA_CALL( cudaSetDevice(i) ); dim3 blockDim(OW, 1, 1); dim3 gridDim(m_size, K, OH); //run_convolution<<>>(input_d[i], output_d[i], filter_d[i], m_size, C, H, W, K, R, S, OH, OW, stride, pad, dilation); run_convolution<<>>(input_d[i], output_d[i], filter_d[i], m_size, C, H, W, K, R, S, stride, pad, dilation); } for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } // Download C matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(output + Nbegin[i] * output_size, output_d[i], (Nend[i] - Nbegin[i]) * output_size * sizeof(float), cudaMemcpyDeviceToHost) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } if (mpi_rank == 0) { // receiving the result for (i = 1; i < mpi_world_size; i++) { m_size = (endN[i] - startN[i]) * output_size; MPI_Irecv(&output[startN[i] * output_size], m_size, MPI_FLOAT, i, MPI_ANY_TAG, MPI_COMM_WORLD, &req4[i]); } // wait for receiving for (i = 1; i < mpi_world_size; i++) { MPI_Wait(&req4[i], &status); } } else { // sending the result m_size = (endN[mpi_rank] - startN[mpi_rank]) * output_size; MPI_Isend(&output[0], m_size, MPI_FLOAT, 0, MATRIX_SEND_RESULT_MSG_ID, MPI_COMM_WORLD, &req4[0]); MPI_Wait(&req4[0], &status); } } void cuda_init() { CUDA_CALL( cudaGetDeviceCount(&num_devices) ); if (mpi_world_size <= 1) { if (N < 4) { num_devices = N; } } else { if (num_devices*2 > N) { num_devices /= 2; } } //printf("num device[%d]\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } int m_size; int slice = (endN[mpi_rank] - startN[mpi_rank]) / num_devices; // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Nbegin[i] = slice * i; Nend[i] = (i == num_devices - 1) ? (endN[mpi_rank] - startN[mpi_rank]) : slice * (i + 1); } // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { m_size = Nend[i] - Nbegin[i]; CUDA_CALL( cudaSetDevice(i) ); // CUDA_CALL( cudaMalloc(&input_d[i], m_size * C * H * W * sizeof(float)) ); CUDA_CALL( cudaMalloc(&filter_d[i], K * C * R * S * sizeof(float)) ); CUDA_CALL( cudaMalloc(&output_d[i], m_size * K * OH * OW * sizeof(float)) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; int i, slice = 0, m_size; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if (N < 8) { mpi_world_size = 1; } slice = N / mpi_world_size; for (i = 0; i < mpi_world_size; i++) { startN[i] = i * slice; endN[i] = (i == mpi_world_size - 1) ? N : (i + 1) * slice; m_size = endN[i] - startN[i]; if (i != 0) { alloc_tensor(&input, m_size, C, H, W); alloc_tensor(&output, m_size, K, OH, OW); alloc_tensor(&filter, K, C, R, S); } } if (mpi_world_size <= mpi_rank) return; cuda_init(); } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { }