#include "convolution.h" #include #include #include "util.h" static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; // int num_threads = 40; int num_threads = 100; void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { int size[2]; MPI_Request request; MPI_Status status; input = _input; output = _output; filter = _filter; if (mpi_world_size == 2) size[1] = _N / 2; else size[1] = 0; size[0] = N - size[1]; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if (mpi_rank == 0 && mpi_world_size == 2) { MPI_Isend(&input[size[0] * C * H * W], size[1] * C * H * W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); MPI_Isend(filter, K * C * R * S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); } else if (mpi_world_size == 2) { alloc_tensor(&input, size[1], C, H, W); alloc_tensor(&output, size[1], K, OH, OW); alloc_tensor(&filter, K, C, R, S); MPI_Recv(input, size[1] * C * H * W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); MPI_Recv(filter, K * C * R * S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); } #pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic) for (int n = 0; n < size[mpi_rank]; ++n) { // #pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic) for (int k = 0; k < K; ++k) { // #pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic) for (int oh = 0; oh < OH; ++oh) { for (int ow = 0; ow < OW; ++ow) { float o = 0.f; for (int c = 0; c < C; ++c) { for (int r = 0; r < R; ++r) { for (int s = 0; s < S; ++s) { int h = oh * stride - pad + r * dilation; int w = ow * stride - pad + s * dilation; if (h < 0 || h >= H || w < 0 || w >= W) continue; float i = input[n * C * H * W + c * H * W + h * W + w]; float f = filter[k * C * R * S + c * R * S + r * S + s]; o += i * f; } } } output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; } } } } if (mpi_rank == 0 && mpi_world_size == 2) { MPI_Recv(&output[size[0] * K * OH * OW], size[1] * K * OH * OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status); } else if(mpi_world_size == 2){ MPI_Isend(output, size[1] * K * OH * OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request); // if (mpi_rank == 0 && mpi_world_size == 1) { // MPI_Recv(&output[size[0] * K * OH * OW], size[1] * K * OH * OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status); // } else if(mpi_world_size == 1){ // MPI_Isend(output, size[0] * K * OH * OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request); } } // OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; // OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; // if (mpi_rank == 0) { // for (int n = 0; n < N; ++n) { // for (int k = 0; k < K; ++k) { // for (int oh = 0; oh < OH; ++oh) { // for (int ow = 0; ow < OW; ++ow) { // float o = 0.f; // for (int c = 0; c < C; ++c) { // for (int r = 0; r < R; ++r) { // for (int s = 0; s < S; ++s) { // int h = oh * stride - pad + r * dilation; // int w = ow * stride - pad + s * dilation; // if (h < 0 || h >= H || w < 0 || w >= W) continue; // float i = input[n * C * H * W + c * H * W + h * W + w]; // float f = filter[k * C * R * S + c * R * S + r * S + s]; // o += i * f; // } // } // } // output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; // } // } // } // } // } void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { }