#include "convolution.h" #include "util.h" #include #include #include #include static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; #define min(a,b) (a>b?b:a) #define HSLICE OH #define WSLICE 128 int num_threads = 100; void convolution_omp_slc() { if((dilation == 1) && (stride == 1) && (pad == 0) && (W%16 == 0) && (S%16 == 0)) { //printf("AVX\n"); #pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic) for (int n = 0; n < N; ++n) { for (int k = 0; k < K; ++k) { //#pragma omp parallel for num_threads(num_threads) schedule(dynamic) for (int oh = 0; oh < OH; ++oh) { //#pragma omp parallel for num_threads(num_threads) schedule(dynamic) for (int ow = 0; ow < OW; ++ow) { //float o = 0.f; __m512 vo = {0.0f}; for (int c = 0; c < C; ++c) { for (int r = 0; r < R; ++r) { //for (int s = 0; s < S; ++s) { for (int s = 0; s < S; s+=16) { int h = oh * stride - pad + r; int w = ow * stride - pad + s; if (h < 0 || h >= H || w < 0 || w >= W) continue; //float i = input[n * C * H * W + c * H * W + h * W + w]; //float f = filter[k * C * R * S + c * R * S + r * S + s]; __m512 vi = _mm512_loadu_ps(&input[n * C * H * W + c * H * W + h * W + w]); __m512 vf = _mm512_loadu_ps(&filter[k * C * R * S + c * R * S + r * S + s]); //o += i * f; vo = _mm512_fmadd_ps(vi, vf, vo); } } } //_mm512_storeu_ps(&output[n * K * OH * OW + k * OH * OW + oh * OW + ow], vo); float o = _mm512_reduce_add_ps(vo); output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; } } } } } else { #pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic) for (int n = 0; n < N; ++n) { for (int k = 0; k < K; ++k) { for (int ohs = 0; ohs= H || w < 0 || w >= W) continue; float i = input[n * C * H * W + c * H * W + h * W + w]; float f = filter[k * C * R * S + c * R * S + r * S + s]; o += i * f; } } } output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; } } //Slice }} } } } } void convolution_omp() { #pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic) for (int n = 0; n < N; ++n) { for (int k = 0; k < K; ++k) { //#pragma omp parallel for num_threads(num_threads) schedule(dynamic) for (int oh = 0; oh < OH; ++oh) { //#pragma omp parallel for num_threads(num_threads) schedule(dynamic) for (int ow = 0; ow < OW; ++ow) { float o = 0.f; for (int c = 0; c < C; ++c) { for (int r = 0; r < R; ++r) { for (int s = 0; s < S; ++s) { int h = oh * stride - pad + r * dilation; int w = ow * stride - pad + s * dilation; if (h < 0 || h >= H || w < 0 || w >= W) continue; float i = input[n * C * H * W + c * H * W + h * W + w]; float f = filter[k * C * R * S + c * R * S + r * S + s]; o += i * f; } } } output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; } } } } } void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { input = _input; output = _output; filter = _filter; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; int default_div_size = N/mpi_world_size; MPI_Status status; //MPI_Request request; if (mpi_rank == 0) { // 1. Distribute batch to the other nodes //timer_start(1); MPI_Request arrA_req[4]; MPI_Status arrA_status[4]; for(int target_rank = 1; target_rank < mpi_world_size; target_rank++){ int div_start, div_size; div_start = target_rank * default_div_size; div_size = default_div_size; if(target_rank == (mpi_world_size - 1)) div_size += N - (default_div_size * mpi_world_size); //printf("send. target_rank=%d, div_start=%d, div_size=%d, tot_size=%d\n", target_rank, div_start, div_size, div_size * C*H*W); MPI_Isend(input + (div_start * C*H*W), div_size * C*H*W, MPI_FLOAT, target_rank, 0, MPI_COMM_WORLD, &arrA_req[target_rank-1]); //MPI_Isend(B, K * N, MPI_FLOAT, target_rank, 0, MPI_COMM_WORLD, &request); } // 2. Broadcase all Filters MPI_Bcast(filter, K*C*R*S, MPI_FLOAT, 0, MPI_COMM_WORLD); //double elapsed_time = timer_stop(1); //printf("[rank %d] scatter time: %f sec\n", mpi_rank, elapsed_time); int original_N = N; N = default_div_size; // 3. Do Convolution //timer_start(1); convolution_omp_slc(); //elapsed_time = timer_stop(1); //printf("[rank %d] time: %f sec\n", mpi_rank, elapsed_time); N = original_N; //timer_start(1); // 4. Receive result from the other node MPI_Request arrC_req[4]; MPI_Status arrC_status[4]; for(int target_rank = 1; target_rank < mpi_world_size; target_rank++){ int div_start, div_size; div_start = target_rank * default_div_size; div_size = default_div_size; if(target_rank == (mpi_world_size - 1)) div_size += N - (default_div_size * mpi_world_size); //printf("wait div_size=%d\n", div_size); MPI_Irecv(output + (div_start * K*OH*OW), div_size * K*OH*OW, MPI_FLOAT, target_rank, 0, MPI_COMM_WORLD, &arrC_req[target_rank-1]); //MPI_Recv(output + (div_start * K*OH*OW), div_size * K*OH*OW, MPI_FLOAT, target_rank, 0, MPI_COMM_WORLD, &arrC_status[target_rank-1]); } //MPI_Waitall(mpi_world_size-1, arrA_req, arrA_status); MPI_Waitall(mpi_world_size-1, arrC_req, arrC_status); //elapsed_time = timer_stop(1); //printf("[rank %d] collect time: %f sec\n", mpi_rank, elapsed_time); }else{ //0. alloc local memory int div_size; div_size = default_div_size; if(mpi_rank == (mpi_world_size - 1)) div_size += N - (default_div_size * mpi_world_size); int original_N = N; N = div_size; // Adjust N size //printf("defulat div size=%d\n", default_div_size); alloc_tensor(&input, N, C, H, W); alloc_tensor(&filter, K, C, R, S); alloc_tensor(&output, N, K, OH, OW); // 1. Recv part of A //printf("sub. rank=%d, div_size=%d, Recv start, tot_size=%d\n", mpi_rank, div_size, N*C*H*W); MPI_Recv(input, N*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); //printf("sub. rank=%d, div_size=%d, Recv end\n", mpi_rank, div_size); // 2. Recv full Filter MPI_Bcast(filter, K*C*R*S, MPI_FLOAT, 0, MPI_COMM_WORLD); // 3. Do Convolution //timer_start(1); convolution_omp(); //double elapsed_time = timer_stop(1); //printf("[rank %d] time: %f sec\n", mpi_rank, elapsed_time); // 4. Send C to rank 0 node. //printf("sub. end. my rank=%d, div_size=%d\n", mpi_rank, div_size); MPI_Send(output, N*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD); N = original_N; //free free(input); free(filter); free(output); } } void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { }