#include "matmul.h" #include "util.h" #include #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 int num_devices = 0; static int mpi_rank, mpi_world_size; static int Asendcounts[4]; static int Adispls[4]; static int Crecvcounts[4]; static int Cdispls[4]; // Array of device (GPU) pointers static float *a_d[MAX_NUM_GPU]; static float *b_d[MAX_NUM_GPU]; static float *c_d[MAX_NUM_GPU]; static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU]; cudaStream_t streams[MAX_NUM_GPU]; #define BLOCK_SIZE 32 #define MIN(a, b) (((a) < (b)) ? (a) : (b)) __global__ void matmul_kernel(float *A, float *B, float *C, int M, int N, int K) { int j = blockIdx.x * blockDim.x + threadIdx.x; int i = blockIdx.y * blockDim.y + threadIdx.y; int gj = blockIdx.x; int gi = blockIdx.y; if (gi * BLOCK_SIZE >= M || gj * BLOCK_SIZE >= N) return; // boundary check int lj = threadIdx.x; int li = threadIdx.y; __shared__ float Alocal[BLOCK_SIZE][BLOCK_SIZE]; __shared__ float Blocal[BLOCK_SIZE][BLOCK_SIZE]; float c = 0.f; int A_row_index = (gi * BLOCK_SIZE + li); int B_col_index = (gj * BLOCK_SIZE + lj); for (int bk = 0; bk < K; bk += BLOCK_SIZE) { int A_col_index = bk + lj; Alocal[li][lj] = (A_row_index < M && A_col_index < K) ? A[A_row_index * K + A_col_index] : 0.f; int B_row_index = bk + li; Blocal[li][lj] = (B_row_index < K && B_col_index < N) ? B[B_row_index * N + B_col_index] : 0.f; __syncthreads(); for (int lk = 0; lk < BLOCK_SIZE; ++lk) { c += Alocal[li][lk] * Blocal[lk][lj]; } __syncthreads(); } if (i < M && j < N) C[i * N + j] = c; } void matmul(const float *A, const float *B, float *C, int M, int N, int K) { MPI_Scatterv(A, Asendcounts, Adispls, MPI_FLOAT, (void*)A, Asendcounts[mpi_rank], MPI_FLOAT, 0, MPI_COMM_WORLD); MPI_Bcast((void*)B, K * N, MPI_FLOAT, 0, MPI_COMM_WORLD); // Upload A and B matrix to every GPU #pragma omp parallel for for (int i = 0; i < num_devices; i++) { CUDA_CALL(cudaSetDevice(i)); CUDA_CALL(cudaMemcpyAsync( a_d[i], A + Mbegin[i] * K, (Mend[i] - Mbegin[i]) * K * sizeof(float), cudaMemcpyHostToDevice, streams[i])); CUDA_CALL(cudaMemcpyAsync(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice, streams[i])); dim3 blockDim(BLOCK_SIZE, BLOCK_SIZE); dim3 gridDim((N + BLOCK_SIZE - 1) / BLOCK_SIZE, (Mend[i] - Mbegin[i] + BLOCK_SIZE-1) / BLOCK_SIZE); matmul_kernel<<>>(a_d[i], b_d[i], c_d[i], Mend[i] - Mbegin[i], N, K); CUDA_CALL(cudaMemcpyAsync(C + Mbegin[i] * N, c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float), cudaMemcpyDeviceToHost, streams[i])); } #pragma omp parallel for for (int i = 0; i < num_devices; i++) { CUDA_CALL(cudaSetDevice(i)); CUDA_CALL(cudaStreamSynchronize(streams[i])); } MPI_Gatherv(C, Crecvcounts[mpi_rank], MPI_FLOAT, C, Crecvcounts, Cdispls, MPI_FLOAT, 0, MPI_COMM_WORLD); } void matmul_initialize(int M, int N, int K) { MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); for (int i = 0; i < mpi_world_size; i++) { Adispls[i] = ((M / mpi_world_size) * K) * i; Asendcounts[i] = ((M / mpi_world_size) * K); Cdispls[i] = ((M / mpi_world_size) * N) * i; Crecvcounts[i] = ((M / mpi_world_size) * N); } Asendcounts[mpi_world_size - 1] = M*K - Adispls[mpi_world_size-1]; Crecvcounts[mpi_world_size - 1] = M*N - Cdispls[mpi_world_size-1]; // Only root process do something CUDA_CALL(cudaGetDeviceCount(&num_devices)); int num_global_devices = 0; MPI_Reduce(&num_devices, (void*)&num_global_devices, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD); if (mpi_rank == 0) { printf("Using %d devices\n", num_devices); } MPI_Barrier(MPI_COMM_WORLD); for (int j = 0; j < mpi_world_size; ++j) { if (mpi_rank == j) { for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL(cudaGetDeviceProperties(&prop, i)); // Try printing more detailed information here printf("[rank %d] GPU %d: %s\n", mpi_rank, i, prop.name); } } MPI_Barrier(MPI_COMM_WORLD); } if (num_devices <= 0) { printf("[rank %d] No CUDA device found. Aborting\n", mpi_rank); exit(1); } // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Mbegin[i] = ((Asendcounts[mpi_rank] / K) / num_devices) * i; Mend[i] = ((Asendcounts[mpi_rank] / K) / num_devices) * (i + 1); } Mend[num_devices - 1] = (Asendcounts[mpi_rank] / K); // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL(cudaSetDevice(i)); CUDA_CALL(cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float))); CUDA_CALL(cudaMalloc(&b_d[i], K * N * sizeof(float))); CUDA_CALL(cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float))); CUDA_CALL(cudaStreamCreate(&streams[i])); } } void matmul_finalize() { for (int i = 0; i < num_devices; i++) { CUDA_CALL(cudaFree(a_d[i])); CUDA_CALL(cudaFree(b_d[i])); CUDA_CALL(cudaFree(c_d[i])); CUDA_CALL(cudaStreamDestroy(streams[i])); } }