#include "mat_mul.h" #include "util.h" #include #include #include #include static float *A, *B, *C; static int M, N, K; // M: number of rows in matrix A // K: number of columns in matrix A // N: number of columns in matrix B static int num_threads; static int mpi_rank; // specific number of a process to be used for MPI static int mpi_world_size; // number of process to be used for MPI static int rows[4] = {0,}; // number of rows to be allocated for each process static int offset[4] = {0,}; #define MASTER 0 // mpi_rank of first task #define FROM_MASTER 1 // setting a message type #define FROM_WORKER 2 // setting a message type using namespace std; #define ITILESIZE (32) #define JTILESIZE (512) #define KTILESIZE (32) //#define BLOCKSIZE 64 static void mat_mul_omp() { // TODO: parallelize & optimize matrix multiplication int end = rows[mpi_rank]; #if 0 for (int kk = 0; kk < K; kk += block_s) { #pragma omp parallel for num_threads(num_threads) schedule(dynamic) \ default(none) private(A_buf) shared(A, B, C, M, end, kk, N, K, block_s) for (int i = 0; i < end; ++i) { for (int k = kk; k < min(kk + block_s, K); ++k) { A_buf = A[i * K + k]; // loop unrolling int N_8 = (N >> 3) <<3; int j = 0; for (; j < N_8; j += 8) { C[i * N + j] += A_buf * B[k * N + j]; C[i * N + j + 1] += A_buf * B[k * N + j + 1]; C[i * N + j + 2] += A_buf * B[k * N + j + 2]; C[i * N + j + 3] += A_buf * B[k * N + j + 3]; C[i * N + j + 4] += A_buf * B[k * N + j + 4]; C[i * N + j + 5] += A_buf * B[k * N + j + 5]; C[i * N + j + 6] += A_buf * B[k * N + j + 6]; C[i * N + j + 7] += A_buf * B[k * N + j + 7]; } // unrolling remainder for (; j < N; ++j) { C[i * N + j] += A_buf * B[k * N + j]; } } } } #endif #if 1 #pragma omp parallel for num_threads(num_threads) schedule(dynamic) for (int ii = 0; ii < end; ii += ITILESIZE) { for (int kk = 0; kk < K; kk += KTILESIZE) { for (int jj = 0; jj < N; jj += JTILESIZE) { int end_k = kk + KTILESIZE < K ? (kk + KTILESIZE) : K; int end_m = ii + ITILESIZE < end ? (ii + ITILESIZE) : end; int end_n = jj + JTILESIZE < N ? (jj + JTILESIZE) : N; for (int i = ii; i < end_m; ++i) { for (int k = kk; k < end_k; ++k) { for (int j = jj; j < end_n; ++j) { C[i * N + j] += A[i * K + k] * B[k * N + j]; } } } } } } } #endif #if 0 int end_k, end_m, end_n; #pragma omp parallel for num_threads(num_threads) \ default(none) shared(A, B, C, M, end_m, end_k, end_n, end, K, N) for (int ii = 0; ii < end; ii += ITILESIZE) { for (int kk = 0; kk < K; kk += KTILESIZE) { for (int jj = 0; jj < N; jj += JTILESIZE) { end_k = kk + KTILESIZE < K ? (kk + KTILESIZE) : K; end_m = ii + ITILESIZE < end ? (ii + ITILESIZE) : end; end_n = jj + JTILESIZE < N ? (jj + JTILESIZE) : N; for (int i = ii; i < end_m; ++i) { for (int k = kk; k < end_k; ++k) { for (int j = jj; j < end_n; ++j) { C[i * N + j] += A[i * K + k] * B[k * N + j]; } } } } } } } #endif void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K, int _num_threads, int _mpi_rank, int _mpi_world_size) { // TODO: parallelize & optimize matrix multiplication on multi-node // You must allocate & initialize A, B, C for non-root processes A = _A, B = _B, C = _C; M = _M, N = _N, K = _K; num_threads = _num_threads; mpi_rank = _mpi_rank; mpi_world_size = _mpi_world_size; MPI_Request request; MPI_Status status; // indexing in common int row_size = M / mpi_world_size; offset[0] = 0; rows[0] = row_size; for (int i = 1; i < mpi_world_size; i++){ // number of rows to be allocated for each process offset[i] = i * row_size; rows[i] = (i == (mpi_world_size - 1)) ? (M - offset[i]) : row_size; } /**************************** Transmitting time (in Master side) ************************************/ // timely parallel sequence in both Master and Worker //MPI_Bcast(B, K*N, MPI_FLOAT, 0, MPI_COMM_WORLD); if (mpi_rank == MASTER) { /* Send matrix data to the workers */ // dest = destination address (relative address) to worker for (int dest = 1; dest < mpi_world_size; dest++) { MPI_Isend(&A[offset[dest]*K], rows[dest]*K, MPI_FLOAT, dest, FROM_MASTER, MPI_COMM_WORLD, &request); MPI_Isend(B, K*N, MPI_FLOAT, dest, FROM_MASTER, MPI_COMM_WORLD, &request); } } else { // array A, B, C -> memory allocation for worker nodes // array C -> initialization for add & assignment calculation alloc_mat(&A, rows[mpi_rank], K); alloc_mat(&B, K, N); alloc_mat(&C, rows[mpi_rank], N); //zero_mat(C, M, N); MPI_Recv(A, rows[mpi_rank]*K, MPI_FLOAT, MASTER, FROM_MASTER, MPI_COMM_WORLD, &status); MPI_Recv(B, K*N, MPI_FLOAT, MASTER, FROM_MASTER, MPI_COMM_WORLD, &status); } mat_mul_omp(); /**************************** Receiving time (in Master side) ************************************/ // timely parallel sequence in both Master and Worker /* Receive MAC results from workers */ // src = source address (relative address) to master if (mpi_rank == MASTER) { for (int src = 1; src < mpi_world_size; src++) { MPI_Recv(&C[offset[src]*N], rows[src]*N, MPI_FLOAT, src, FROM_WORKER, MPI_COMM_WORLD, &status); } } else { MPI_Isend(C, rows[mpi_rank]*N, MPI_FLOAT, MASTER, FROM_WORKER, MPI_COMM_WORLD, &request); } }