#include "mat_mul.h" #include #include #include #define MASTER (0) #define FROM_MASTER (1) #define FROM_WORKER (2) #define ITILESIZE (32) #define JTILESIZE (1024) #define KTILESIZE (1024) static float *A, *B, *C; static int M, N, K; static int num_threads; static int mpi_rank, mpi_world_size; static int offset, rows; void _alloc_mat(float **m, int R, int C) { *m = (float *)aligned_alloc(32, sizeof(float) * R * C); if (*m == NULL) { printf("Failed to allocate memory for matrix.\n"); exit(0); } } void _zero_mat(float *m, int R, int C) { memset(m, 0, sizeof(float) * R * C); } static int min(int x, int y) { return x < y ? x : y; } static void mat_mul_omp() { // TODO: parallelize & optimize matrix multiplication // Use num_threads per node int is = 0; int ie = rows; #pragma omp parallel for num_threads(num_threads) schedule(dynamic) for (int ii = is; ii < ie; ii += ITILESIZE) { for (int jj = 0; jj < N; jj += JTILESIZE) { for (int kk = 0; kk < K; kk += KTILESIZE) { for (int k = kk; k < min(K, kk + KTILESIZE); k++) { for (int i = ii; i < min(ie, ii + ITILESIZE); i++) { float ar = A[i * K + k]; for (int j = jj; j < min(N, jj + JTILESIZE); j+=1) { C[i * N + j] += ar * B[k * N + j]; } } } } } } } void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K, int _num_threads, int _mpi_rank, int _mpi_world_size) { A = _A, B = _B, C = _C; M = _M, N = _N, K = _K; num_threads = _num_threads, mpi_rank = _mpi_rank, mpi_world_size = _mpi_world_size; MPI_Status status; MPI_Request request; // TODO: parallelize & optimize matrix multiplication on multi-node // You must allocate & initialize A, B, C for non-root processes // FIXME: for now, only root process runs the matrix multiplication. if (mpi_rank == 0) { int row = M / mpi_world_size; int start, end; for(int dest = 1; dest < mpi_world_size; dest++) { start = offset = dest * row; end = dest == mpi_world_size -1 ? M : (dest+1)*row; rows = end - start; MPI_Isend(&offset, 1, MPI_INT, dest, FROM_MASTER, MPI_COMM_WORLD, &request); MPI_Isend(&rows, 1, MPI_INT, dest, FROM_MASTER, MPI_COMM_WORLD, &request); MPI_Isend(&A[offset*K], rows*K, MPI_FLOAT, dest, FROM_MASTER, MPI_COMM_WORLD, &request); MPI_Isend(B, K*N, MPI_FLOAT, dest, FROM_MASTER, MPI_COMM_WORLD, &request); } rows = row; mat_mul_omp(); for(int dest = 1; dest < mpi_world_size; dest++) { MPI_Recv(&offset, 1, MPI_INT, dest, FROM_WORKER, MPI_COMM_WORLD, &status); MPI_Recv(&rows, 1, MPI_INT, dest, FROM_WORKER, MPI_COMM_WORLD, &status); MPI_Recv(&C[offset*N], rows*N, MPI_FLOAT, dest, FROM_WORKER, MPI_COMM_WORLD, &status); } } else { _alloc_mat(&A, M, K); _alloc_mat(&B, K, N); _alloc_mat(&C, M, N); _zero_mat(C, M, N); MPI_Recv(&offset, 1, MPI_INT, MASTER, FROM_MASTER, MPI_COMM_WORLD, &status); MPI_Recv(&rows, 1, MPI_INT, MASTER, FROM_MASTER, MPI_COMM_WORLD, &status); MPI_Recv(A, rows*K, MPI_FLOAT, MASTER, FROM_MASTER, MPI_COMM_WORLD, &status); MPI_Recv(B, K*N, MPI_FLOAT, MASTER, FROM_MASTER, MPI_COMM_WORLD, &status); mat_mul_omp(); MPI_Isend(&offset, 1, MPI_INT, MASTER, FROM_WORKER, MPI_COMM_WORLD, &request); MPI_Isend(&rows, 1, MPI_INT, MASTER, FROM_WORKER, MPI_COMM_WORLD, &request); MPI_Isend(C, rows*N, MPI_FLOAT, MASTER, FROM_WORKER, MPI_COMM_WORLD, &request); } }