#include "mat_mul.h" #include "util.h" #include #include #include #include #define MASTER 0 #define FROM_MASTER 1 #define FROM_WORKER 2 #define ITILESIZE (32) #define JTILESIZE (1024) #define KTILESIZE (1024) static float *A, *B, *C; static int M, N, K; static int num_threads; static int mpi_rank, mpi_world_size; MPI_Status status; MPI_Request request; int numworkers, // number of worker tasks source, // task id of message source dest, // task id of message destination mtype, // message type rows, // rows of matrix A sent to each worker averow, extra, offset, // used to determine rows sent to each worker i, j, k; static int min(int x, int y) { return x < y ? x : y; } static void mat_mul_omp() { // TODO: parallelize & optimize matrix multiplication // Use num_threads per node int is = 0; int ie = rows; #pragma omp parallel for num_threads(num_threads) schedule(dynamic) for (int ii = is; ii < ie; ii += ITILESIZE) { for (int jj = 0; jj < N; jj += JTILESIZE) { for (int kk = 0; kk < K; kk += KTILESIZE) { for ( k = kk; k < min(K, kk + KTILESIZE); k++) { for ( i = ii; i < min(ie, ii + ITILESIZE); i++) { float ar = A[i * K + k]; for ( j = jj; j < min(N, jj + JTILESIZE); j+=1) { C[i * N + j] += ar * B[k * N + j]; } } } } } } } void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K, int _num_threads, int _mpi_rank, int _mpi_world_size) { A = _A, B = _B, C = _C; M = _M, N = _N, K = _K; num_threads = _num_threads, mpi_rank = _mpi_rank, mpi_world_size = _mpi_world_size; // TODO: parallelize & optimize matrix multiplication on multi-node // You must allocate & initialize A, B, C for non-root processes numworkers = mpi_world_size; if (numworkers == 0) { rows = M; mat_mul_omp(); } else { // MASTER initialization & send matrix data to the worker tasks if (mpi_rank == MASTER) { averow = M / numworkers; int os, de; extra = M % numworkers; offset = 0; mtype = FROM_MASTER; for (dest = 1; dest < numworkers; dest++) { os = offset = dest * averow; de = dest == numworkers - 1 ? M : (dest + 1) * averow; rows = de - os; printf("sending %d rows to task %d offset =%d\n", rows, dest, offset); MPI_Isend(&offset, 1, MPI_INT, dest, mtype, MPI_COMM_WORLD, &request); MPI_Isend(&rows, 1, MPI_INT, dest, mtype, MPI_COMM_WORLD, &request); MPI_Isend(&A[offset * K], rows * K, MPI_FLOAT, dest, mtype, MPI_COMM_WORLD, &request); MPI_Isend(B, K * N, MPI_FLOAT, dest, mtype, MPI_COMM_WORLD, &request); } rows = averow; mat_mul_omp(); // Receive results from worker tasks mtype = FROM_WORKER; for (i = 1; i < numworkers; i++){ source = i; MPI_Recv(&offset, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status); MPI_Recv(&rows, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status); MPI_Recv(&C[offset * N], rows * N, MPI_FLOAT, source, mtype, MPI_COMM_WORLD, &status); printf("Received result from task %d\n", source); } } if (mpi_rank > MASTER) { alloc_mat(&A, M, K); alloc_mat(&B, K, N); alloc_mat(&C, M, N); zero_mat(C, M, N); mtype = FROM_MASTER; MPI_Recv(&offset, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD, &status); MPI_Recv(&rows, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD, &status); MPI_Recv(A, rows * K, MPI_FLOAT, MASTER, mtype, MPI_COMM_WORLD, &status); MPI_Recv(B, K * N, MPI_FLOAT, MASTER, mtype, MPI_COMM_WORLD, &status); mat_mul_omp(); mtype = FROM_WORKER; MPI_Isend(&offset, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD, &request); MPI_Isend(&rows, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD, &request); MPI_Isend(C, rows * N, MPI_FLOAT, MASTER, mtype, MPI_COMM_WORLD, &request); } } }