#include "mat_mul.h" #include #include #define TS_M 64 // The tile-size in dimension M #define TS_N 64 // The tile-size in dimension N #define TS_K 64 // The tile-size in dimension K #define WPT_M 16 // The amount of work-per-thread in dimension M #define WPT_N 8 // The amount of work-per-thread in dimension N #define CEIL_DIV(x,y) ( ((x) + (y) - 1) / (y) ) #define CEIL(x,y) ( CEIL_DIV((x),(y)) * (y) ) #define CHECK_ERROR(err) \ if (err != CL_SUCCESS) { \ printf("[%s:%d] OpenCL error %d\n", __FILE__, __LINE__, err); \ exit(EXIT_FAILURE); \ } static cl_int err; static cl_platform_id platform; static cl_device_id device; static cl_context context; static cl_command_queue queue; static cl_program program; static cl_kernel kernel; static cl_mem a_d, b_d, c_d; static float *A, *B, *C; static int M, N, K; void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) { A = _A, B = _B, C = _C; M = _M, N = _N, K = _K; // Setup kernel arguments err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &a_d); CHECK_ERROR(err); err = clSetKernelArg(kernel, 1, sizeof(cl_mem), &b_d); CHECK_ERROR(err); err = clSetKernelArg(kernel, 2, sizeof(cl_mem), &c_d); CHECK_ERROR(err); err = clSetKernelArg(kernel, 3, sizeof(int), &M); CHECK_ERROR(err); err = clSetKernelArg(kernel, 4, sizeof(int), &N); CHECK_ERROR(err); err = clSetKernelArg(kernel, 5, sizeof(int), &K); CHECK_ERROR(err); // Setup global work size and local work size // size_t gws[2] = {(size_t)M, (size_t)N}, lws[2] = {1, 1}; size_t gws[2] = {CEIL_DIV((size_t)M, WPT_M), CEIL_DIV((size_t)N, WPT_N)}; size_t lws[2] = {CEIL_DIV(TS_M, WPT_M), CEIL_DIV(TS_N, WPT_N)}; for (int i = 0; i < 2; ++i) { // By OpenCL spec, global work size should be MULTIPLE of local work size // Formula below achieve it // e.g., gws = 25, lws = 16, then (25 + 16 - 1) / 16 * 16 = 40 / 16 * 16 = 2 * 16 = 32 gws[i] = (gws[i] + lws[i] - 1) / lws[i] * lws[i]; } // Run kernel err = clEnqueueNDRangeKernel(queue, kernel, 2, NULL, gws, lws, 0, NULL, NULL); CHECK_ERROR(err); // DO NOT REMOVE; NEEDED FOR TIME MEASURE err = clFinish(queue); CHECK_ERROR(err); } static void print_platform_info(cl_platform_id platform) { size_t sz; char *buf; CHECK_ERROR(clGetPlatformInfo(platform, CL_PLATFORM_NAME, 0, NULL, &sz)); buf = (char*)malloc(sz); CHECK_ERROR(clGetPlatformInfo(platform, CL_PLATFORM_NAME, sz, buf, NULL)); printf("Detected OpenCL platform: %s\n", buf); free(buf); } static void print_device_info(cl_device_id device) { size_t sz; char *buf; CHECK_ERROR(clGetDeviceInfo(device, CL_DEVICE_NAME, 0, NULL, &sz)); buf = (char*)malloc(sz); CHECK_ERROR(clGetDeviceInfo(device, CL_DEVICE_NAME, sz, buf, NULL)); printf("Detected OpenCL device: %s\n", buf); free(buf); } static cl_program create_and_build_program_with_source(cl_context context, cl_device_id device, const char *file_name) { FILE *file = fopen(file_name, "rb"); if (file == NULL) { printf("Failed to open %s\n", file_name); exit(EXIT_FAILURE); } fseek(file, 0, SEEK_END); size_t source_size = ftell(file); rewind(file); char *source_code = (char*)malloc(source_size + 1); size_t ntotal = 0; while (ntotal < source_size) { int nread = fread(source_code, sizeof(char), source_size, file); ntotal += nread; } source_code[source_size] = '\0'; fclose(file); cl_program program = clCreateProgramWithSource(context, 1, (const char **)&source_code, &source_size, &err); CHECK_ERROR(err); free(source_code); err = clBuildProgram(program, 1, &device, "", NULL, NULL); if (err == CL_BUILD_PROGRAM_FAILURE) { size_t log_size; CHECK_ERROR(clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size)); char *log = (char*)malloc(log_size + 1); CHECK_ERROR(clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, log_size, log, NULL)); log[log_size] = 0; printf("Compile error:\n%s\n", log); free(log); } CHECK_ERROR(err); return program; } void mat_mul_init(float *A, float *B, float *C, int M, int N, int K) { // Get OpenCL platform err = clGetPlatformIDs(1, &platform, NULL); CHECK_ERROR(err); print_platform_info(platform); // Get OpenCL device err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, NULL); CHECK_ERROR(err); print_device_info(device); // Create OpenCL context context = clCreateContext(NULL, 1, &device, NULL, NULL, &err); CHECK_ERROR(err); // Create OpenCL command queue queue = clCreateCommandQueue(context, device, 0, &err); CHECK_ERROR(err); // Compile program from "kernel.cl" program = create_and_build_program_with_source(context, device, "kernel.cl"); // Extract kernel from compiled program kernel = clCreateKernel(program, "sgemm", &err); CHECK_ERROR(err); // Create GPU buffers a_d = clCreateBuffer(context, CL_MEM_READ_WRITE, M * K * sizeof(float), NULL, &err); CHECK_ERROR(err); b_d = clCreateBuffer(context, CL_MEM_READ_WRITE, K * N * sizeof(float), NULL, &err); CHECK_ERROR(err); c_d = clCreateBuffer(context, CL_MEM_READ_WRITE, M * N * sizeof(float), NULL, &err); CHECK_ERROR(err); // Write to GPU; A (cpu) -> a_d (gpu), B (cpu) -> b_d (gpu) err = clEnqueueWriteBuffer(queue, a_d, CL_TRUE, 0, M * K * sizeof(float), A, 0, NULL, NULL); CHECK_ERROR(err); err = clEnqueueWriteBuffer(queue, b_d, CL_TRUE, 0, K * N * sizeof(float), B, 0, NULL, NULL); CHECK_ERROR(err); // DO NOT REMOVE; NEEDED FOR TIME MEASURE err = clFinish(queue); CHECK_ERROR(err); } void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) { // Read from GPU; c_d (gpu) -> C (cpu) err = clEnqueueReadBuffer(queue, c_d, CL_TRUE, 0, M * N * sizeof(float), C, 0, NULL, NULL); CHECK_ERROR(err); // DO NOT REMOVE; NEEDED FOR TIME MEASURE err = clFinish(queue); CHECK_ERROR(err); }