#include "mat_mul.h" #include #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 #define TileSize 32 #define SubWorkSize 16 #define Offset (TileSize/SubWorkSize) int num_devices = 0; __global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) { //const int g_row = blockDim.x * SubWorkSize * blockIdx.x + threadIdx.x; const int g_row = TileSize * blockIdx.x + threadIdx.x; //const int g_col = blockDim.y * blockIdx.y + threadIdx.y; const int g_col = TileSize * blockIdx.y + threadIdx.y; const int l_row = threadIdx.x; const int l_col = threadIdx.y; __shared__ float Asub[TileSize][TileSize]; __shared__ float Bsub[TileSize][TileSize]; float acc[SubWorkSize]; for (int w = 0; w < SubWorkSize; w++) { acc[w] = 0.0f; } const int num_tiles = (K + TileSize - 1) / TileSize; for (int t = 0; t < num_tiles; t++) { for (int w = 0; w < SubWorkSize; w++) { const int t_row = TileSize * t + l_row; const int t_col = TileSize * t + l_col; int A_row_bound = g_row + w*Offset; int B_row_bound = t_row + w*Offset; if ((A_row_bound < M) && (t_col < K)) Asub[l_row + w*Offset][l_col] = A[(g_row + w*Offset)*K + t_col]; else Asub[l_row + w*Offset][l_col] = 0.0f; if ((B_row_bound < K) && (g_col < N)) Bsub[l_row + w*Offset][l_col] = B[(t_row + w*Offset)*N + g_col]; else Bsub[l_row + w*Offset][l_col] = 0.0f; } __syncthreads(); for (int k=0; k < TileSize; k++) { for (int w=0; w < SubWorkSize; w++) { acc[w] += Asub[l_row + w*Offset][k] * Bsub[k][l_col]; } } __syncthreads(); // barrier(CLK_LOCAL_MEM_FENCE); } for (int w=0; w < SubWorkSize; w++) { int C_row_bound = g_row + w*Offset; if ((C_row_bound < M) && (g_col < N)) C[(g_row + w*Offset)*N + g_col] = acc[w]; else return; } } // Array of device (GPU) pointers static float *a_d[MAX_NUM_GPU]; static float *b_d[MAX_NUM_GPU]; static float *c_d[MAX_NUM_GPU]; static int M, N, K; static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU]; void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) { // Launch kernel on every GPU for (int i = 0; i < num_devices; i++) { dim3 blockDim(TileSize/SubWorkSize, TileSize, 1); int nBlock_row = (Mend[i] - Mbegin[i] + TileSize - 1) / TileSize; int nBlock_col = (N + TileSize -1) / TileSize; // printf("nBlock_row[%d]: %d, Mbegin[%d]: %d, Mend[%d]: %d\n", i, nBlock_row, i, Mbegin[i], i, Mend[i]); // printf("BlockDim.x: %d, BlockDim.y: %d \n", blockDim.x, blockDim.y); //dim3 gridDim(Mend[i] - Mbegin[i], N, 1); dim3 gridDim(nBlock_row, nBlock_col, 1); CUDA_CALL( cudaSetDevice(i) ); sgemm<<>>(a_d[i], b_d[i], c_d[i], M, N, K); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) { M = _M, N = _N, K = _K; CUDA_CALL( cudaGetDeviceCount(&num_devices) ); // for multiple GPUs // num_devices = 1; // for performance check in a GPU printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Mbegin[i] = (M / num_devices) * i; Mend[i] = (M / num_devices) * (i + 1); } Mend[num_devices - 1] = M; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) ); CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) ); CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) ); } // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K, (Mend[i] - Mbegin[i]) * K * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) { // Do any post-matmul cleanup work here. // Download C matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float), cudaMemcpyDeviceToHost) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } }