#include "mat_mul.h" #include #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define TS 32 #define WPT 8 #define RTS (TS/WPT) #define MAX_NUM_GPU 4 int num_devices = 0; __global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) { const int row = threadIdx.x;//get_local_id(0); // row index of C const int col = threadIdx.y;//get_local_id(1); // row index of C const int global_row = (blockDim.x*WPT)*blockIdx.x+threadIdx.x; const int global_col = blockDim.y*blockIdx.y+threadIdx.y; __shared__ float Asub[TS][TS]; __shared__ float Bsub[TS][TS]; float acc[WPT]; for(int w=0;w0 ? K/TS+1 : K/TS; const int num_tiles = (K+TS-1)/TS; //printf("K, K %% TS, numtile %d %d %d\n", K,K%TS,num_tiles); for(int t=0;t=M || tile_col >= K) {Asub[row+w*RTS][col]=0.0f;} else Asub[row+w*RTS][col]=A[(global_row+w*RTS)*K+tile_col]; if(tile_row+w*RTS>=K||global_col>=N) {Bsub[row+w*RTS][col]=0.0f;} else Bsub[row+w*RTS][col]=B[(tile_row+w*RTS)*N+global_col]; } //barrier(CLK_LOCAL_MEM_FENCE); __syncthreads(); for (int k = 0; k < TS; k++) { for(int w=0;w=M || global_col >=N) continue; else C[(global_row+w*RTS)*N+global_col]=acc[w]; } } // Array of device (GPU) pointers static float *a_d[MAX_NUM_GPU]; static float *b_d[MAX_NUM_GPU]; static float *c_d[MAX_NUM_GPU]; static int M, N, K; static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU]; void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) { // Launch kernel on every GPU for (int i = 0; i < num_devices; i++) { dim3 blockDim(TS/WPT,TS,1); dim3 gridDim( ((Mend[i]-Mbegin[i]+TS-1)/TS), (N+TS-1)/TS, 1); //dim3 gridDim(Mend[i] - Mbegin[i], N, 1); CUDA_CALL( cudaSetDevice(i) ); sgemm<<>>(a_d[i], b_d[i], c_d[i], M, N, K); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) { M = _M, N = _N, K = _K; CUDA_CALL( cudaGetDeviceCount(&num_devices) ); printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Mbegin[i] = (M / num_devices) * i; Mend[i] = (M / num_devices) * (i + 1); } Mend[num_devices - 1] = M; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) ); CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) ); CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) ); } // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K, (Mend[i] - Mbegin[i]) * K * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) { // Do any post-matmul cleanup work here. // Download C matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float), cudaMemcpyDeviceToHost) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } }