#include "mat_mul.h" #include "util.h" #include #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define TS 32 #define WPT 16 #define RTS (TS/WPT) #define MAX_NUM_GPU 4 int num_devices = 0; __global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) { const int row = threadIdx.x; // Local row ID (max: TS/WIDTH) const int col = threadIdx.y; // Local col ID (max: TS) const int globalRow = blockDim.x * WPT * blockIdx.x + row; const int globalCol = blockDim.y * blockIdx.y + col; // 0..N if (globalRow >= M || globalCol >= N) return; // Local memory to fit a tile of TS*TS elements of A and B __shared__ float Asub[TS][TS]; __shared__ float Bsub[TS][TS]; const int numTiles = K/TS; float sum[WPT]; for (int w=0; w>>(a_d[i], b_d[i], c_d[i], Mend[i] - Mbegin[i], N, K); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_init(float *_A, float *_B, float *_C, int _M, int _N, int _K) { // M = _M, N = _N, K = _K; M = (_M & (TS-1))? _M + (TS - (_M & (TS-1))) : _M; N = (_N & (TS-1))? _N + (TS - (_N & (TS-1))) : _N; K = (_K & (TS-1))? _K + (TS - (_K & (TS-1))) : _K; CopyBuf = 0; if(M == _M && K == _K){ A = _A; } else{ alloc_mat(&A, M, K); for (int i = 0; i < M; i++) { for (int j = 0; j < K; j++) { if(i<_M && j<_K) A[i * K + j] = _A[i * _K + j]; else A[i * K + j] = 0; } } CopyBuf = 1; } if(K == _K && N == _N){ B = _B; } else{ alloc_mat(&B, K, N); for (int i = 0; i < K; i++) { for (int j = 0; j < N; j++) { if(i<_K && j<_N) B[i * N + j] = _B[i * _N + j]; else B[i * N + j] = 0; } } CopyBuf = 1; } if(M == _M && N == _N){ C = _C; } else{ alloc_mat(&C, M, N); zero_mat(C, M, N); CopyBuf = 1; } ///////////////////////// CUDA_CALL( cudaGetDeviceCount(&num_devices) ); if(num_devices > MAX_NUM_GPU) num_devices = MAX_NUM_GPU; printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Mbegin[i] = (M / num_devices) * i; Mend[i] = (M / num_devices) * (i + 1); } Mend[num_devices - 1] = M; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) ); CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) ); CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) ); } // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K, (Mend[i] - Mbegin[i]) * K * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_final(float *_A, float *_B, float *_C, int _M, int _N, int _K) { // Do any post-matmul cleanup work here. // Download C matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float), cudaMemcpyDeviceToHost) ); } if(CopyBuf == 1){ for (int i = 0; i < _M; i++) { for (int j = 0; j < _N; j++) { _C[i * _N + j] = C[i * N + j]; } } } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } }