#include "mat_mul.h" #include #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 #define TS 16 int num_devices = 0; __global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) { __shared__ float Asub[TS][TS]; __shared__ float Bsub[TS][TS]; int bx = blockIdx.x, by = blockIdx.y, tx = threadIdx.x, ty = threadIdx.y, Row = by * TS + ty, Col = bx * TS + tx; float Pvalue = 0; int numARows=M; int numAColumns=K; int numBRows=K; int numBColumns=N; int numCRows=M; int numCColumns=N; const int numTiles = (K+TS-1)/TS; for (int m = 0; m < (numAColumns-1)/TS+1; ++m) { if (Row < numARows && m*TS+tx < numAColumns) Asub[ty][tx] = A[Row*numAColumns + m*TS+tx]; else Asub[ty][tx] = 0; if (Col < numBColumns && m*TS+ty < numBRows) Bsub[ty][tx] = B[(m*TS+ty)*numBColumns+Col]; else Bsub[ty][tx] = 0; __syncthreads(); for (int k = 0; k < TS; ++k) Pvalue += Asub[ty][k] * Bsub[k][tx]; __syncthreads(); } if (Row < numCRows && Col < numCColumns) C[Row*numCColumns+Col] = Pvalue; } // Array of device (GPU) pointers static float *a_d[MAX_NUM_GPU]; static float *b_d[MAX_NUM_GPU]; static float *c_d[MAX_NUM_GPU]; static int M, N, K; static int Mstart[MAX_NUM_GPU], Mend[MAX_NUM_GPU]; void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) { // Launch kernel on every GPU for (int i = 0; i < num_devices; i++) { dim3 blockDim(TS, TS, 1); dim3 gridDim((_N-1)/TS+1, ( Mend[i] - Mstart[i]-1)/TS+1, 1); CUDA_CALL( cudaSetDevice(i) ); sgemm<<>>(a_d[i], b_d[i], c_d[i], Mend[i] - Mstart[i], N, K); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) { M = _M, N = _N, K = _K; CUDA_CALL( cudaGetDeviceCount(&num_devices) ); printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Mstart[i] = (M / num_devices) * i; Mend[i] = (M / num_devices) * (i + 1); } Mend[num_devices - 1] = M; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mstart[i]) * K * sizeof(float)) ); CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) ); CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mstart[i]) * N * sizeof(float)) ); //printf("numD=%d, start=%d, end=%d\n", num_devices, Mstart[i], Mend[i]); } // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(a_d[i], A + Mstart[i] * K, (Mend[i] - Mstart[i]) * K * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) { // Do any post-matmul cleanup work here. // Download C matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(C + Mstart[i] * N, c_d[i], (Mend[i] - Mstart[i]) * N * sizeof(float), cudaMemcpyDeviceToHost) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } }