#include "mat_mul.h" #include #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 int num_devices = 0; //// 4800 //#define TS 16 //// 6900 //#define TS 18 // 7400 #define TS 20 //// 6400 //#define TS 25 __global__ void sgemm_no_wpt(float *A_d, float *B_d, float *C_d, int M_d, int N_d, int K_d) { int global_row = blockDim.x * blockIdx.x + threadIdx.x; int global_col = blockDim.y * blockIdx.y + threadIdx.y; int global_row_K_d = global_row * K_d; int numTiles = (K_d+TS-1)/TS; __shared__ float Asub[TS][TS]; __shared__ float Bsub[TS][TS]; int t; int k; float acc = 0; for(t = 0; t < TS*(numTiles-1); t += TS){ int t_row = t + threadIdx.x; int t_col = t + threadIdx.y; Asub[threadIdx.x][threadIdx.y] = A_d[global_row_K_d + t_col]; Bsub[threadIdx.x][threadIdx.y] = B_d[(t_row)*N_d + global_col]; __syncthreads(); for(k = 0; k < TS; k++){ acc += Asub[threadIdx.x][k] * Bsub[k][threadIdx.y]; } __syncthreads(); } int t_row = TS * (numTiles-1) + threadIdx.x; int t_col = TS * (numTiles-1) + threadIdx.y; if(((global_row) >= M_d) || (t_col >= K_d)){ Asub[threadIdx.x][threadIdx.y] = 0; } else{ Asub[threadIdx.x][threadIdx.y] = A_d[(global_row)*K_d + t_col]; } if(((t_row) >= K_d) || (global_col >= N_d)){ Bsub[threadIdx.x][threadIdx.y] = 0; } else{ Bsub[threadIdx.x][threadIdx.y] = B_d[(t_row)*N_d + global_col]; } __syncthreads(); for(k = 0; k < TS; k++){ acc += Asub[threadIdx.x][k] * Bsub[k][threadIdx.y]; } __syncthreads(); if(((global_row) >= M_d) || (global_col >= N_d)) return; C_d[(global_row)*N_d + global_col] = acc; } // Array of device (GPU) pointers static float * a_d[MAX_NUM_GPU]; static float * b_d[MAX_NUM_GPU]; static float * c_d[MAX_NUM_GPU]; static int M, N, K; static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU]; void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) { // Launch kernel on every GPU dim3 blockDim(TS, TS, 1); for (int i = 0; i < num_devices; i++) { dim3 gridDim(((Mend[i] - Mbegin[i])+TS-1)/(TS), (N+TS-1)/TS, 1); CUDA_CALL( cudaSetDevice(i) ); sgemm_no_wpt<<>>(a_d[i], b_d[i], c_d[i], Mend[i] - Mbegin[i], N, K); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) { M = _M, N = _N, K = _K; CUDA_CALL( cudaGetDeviceCount(&num_devices) ); printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Mbegin[i] = (M / num_devices) * i; Mend[i] = (M / num_devices) * (i + 1); } Mend[num_devices - 1] = M; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) ); CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) ); CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) ); } // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K, (Mend[i] - Mbegin[i]) * K * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) { // Do any post-matmul cleanup work here. // Download C matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float), cudaMemcpyDeviceToHost) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } //#define WPT 1 //#define RTS (TS/WPT) //__global__ void sgemm(float *A_d, float *B_d, float *C_d, int M_d, int N_d, int K_d) { // // int global_row = blockDim.x * blockIdx.x + threadIdx.x; // int global_col = blockDim.y * blockIdx.y + threadIdx.y; // // int numTiles = (K_d+TS-1)/TS; // // __shared__ float Asub[TS][TS]; // __shared__ float Bsub[TS][TS]; // // int t; // int w; // int k; // // float acc[WPT]; // for(w = 0; w < WPT; w++){ // acc[w] = 0; // } // // for(t = 0; t < numTiles; t++){ // int t_row = TS * t + threadIdx.x; // int t_col = TS * t + threadIdx.y; // for(w = 0; w < WPT; w++){ // if(((global_row + w*RTS) >= M_d) || (t_col >= K_d)){ // Asub[threadIdx.x + w*RTS][threadIdx.y] = 0; // } // else{ // Asub[threadIdx.x + w*RTS][threadIdx.y] = A_d[(global_row + w*RTS)*K_d + t_col]; // } // // if(((t_row + w*RTS) >= K_d) || (global_col >= N_d)){ // Bsub[threadIdx.x + w*RTS][threadIdx.y] = 0; // } // else{ // Bsub[threadIdx.x + w*RTS][threadIdx.y] = B_d[(t_row + w*RTS)*N_d + global_col]; // } // } // __syncthreads(); // for(k = 0; k < TS; k++){ // for(w = 0; w < WPT; w++){ // acc[w] += Asub[threadIdx.x + w*RTS][k] * Bsub[k][threadIdx.y]; // } // } // __syncthreads(); // } // // for(w = 0; w < WPT; w++){ // if(((global_row + w*RTS) >= M_d) || (global_col >= N_d)) break; // C_d[(global_row + w*RTS)*N_d + global_col] = acc[w]; // } //}