#include "mat_mul.h" #include #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 int num_devices = 0; #define TILE_SIZE 32 #define WPT 8 // work per thread #define RTS (TILE_SIZE / WPT) __global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) { const int row = threadIdx.x; // Local row ID (max: TILE_SIZE/WPT == RTS) const int col = threadIdx.y; // Local col ID (max: TILE_SIZE) const int globalRow = TILE_SIZE * blockIdx.x + row; // row index of C (N) const int globalCol = TILE_SIZE * blockIdx.y + col; // column index of C (M) const int numTiles = (K + TILE_SIZE - 1) / TILE_SIZE; // local memory for tile __shared__ float Asub[TILE_SIZE][TILE_SIZE]; __shared__ float Bsub[TILE_SIZE][TILE_SIZE]; // Init result memory float res[WPT]; for (int i = 0; i < WPT; i++) { res[i] = 0.0f; } for (int t = 0; t < numTiles; t++) { const int tiledRow = TILE_SIZE * t + row; const int tiledCol = TILE_SIZE * t + col; // Load A and B to local memory for (int w = 0; w < WPT; w++) { if (((w * RTS + globalRow) >= M) || (tiledCol >= K)) { Asub[w * RTS + row][col] = 0; } else { Asub[w * RTS + row][col] = A[(w * RTS + globalRow) * K + tiledCol]; } if (((w * RTS + tiledRow) >= K) || (globalCol >= N)) { Bsub[w * RTS + row][col] = 0; } else { Bsub[w * RTS + row][col] = B[(w * RTS + tiledRow) * N + globalCol]; } } __syncthreads(); // result for tile for (int i = 0; i < TILE_SIZE; i++) { for (int j = 0; j < WPT; j++) { res[j] += Asub[j * RTS + row][i] * Bsub[i][col]; } } __syncthreads(); } // final results in C for (int w = 0; w < WPT; w++) { if ((w * RTS + globalRow < M) && (globalCol < N)) { C[(w * RTS + globalRow) * N + globalCol] = res[w]; } } } // Array of device (GPU) pointers static float *a_d[MAX_NUM_GPU]; static float *b_d[MAX_NUM_GPU]; static float *c_d[MAX_NUM_GPU]; static int M, N, K; static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU]; void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) { // Launch kernel on every GPU for (int i = 0; i < num_devices; i++) { dim3 blockDim(RTS, TILE_SIZE, 1); dim3 gridDim(((Mend[i] - Mbegin[i]) + TILE_SIZE - 1) / TILE_SIZE, (N + TILE_SIZE - 1) / TILE_SIZE, 1); CUDA_CALL( cudaSetDevice(i) ); sgemm<<>>(a_d[i], b_d[i], c_d[i], (Mend[i] - Mbegin[i]), N, K); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) { M = _M, N = _N, K = _K; CUDA_CALL( cudaGetDeviceCount(&num_devices) ); printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // // temporary!!! // num_devices = 1; // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Mbegin[i] = (M / num_devices) * i; Mend[i] = (M / num_devices) * (i + 1); } Mend[num_devices - 1] = M; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) ); CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) ); CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) ); } // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K, (Mend[i] - Mbegin[i]) * K * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { // CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) { // Do any post-matmul cleanup work here. // Download C matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float), cudaMemcpyDeviceToHost) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } }