#include "convolution.h" #include "util.h" #include #include #define NUM_THREADS 80 #define T_SIZE_OH 16 #define T_SIZE_OW 8 static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; MPI_Request request; MPI_Status status; void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { input = _input; output = _output; filter = _filter; int divided_N = N / mpi_world_size; int modular_N = N % mpi_world_size; int stride_N[4]; int offset[4]; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; offset[0] = 0; stride_N[0] = divided_N; for (int i = 1; i < mpi_world_size; i++) { if (i <= modular_N) stride_N[i] = divided_N + 1; else stride_N[i] = divided_N; offset[1] = divided_N; if (i > 1) offset[i] = offset[i-1] + stride_N[i-1]; } if (mpi_rank != 0) { alloc_tensor(&input, stride_N[mpi_rank], C, H, W); alloc_tensor(&output, stride_N[mpi_rank], K, OH, OW); alloc_tensor(&filter, K, C, R, S); } MPI_Bcast(filter, K*C*R*S, MPI_FLOAT, 0, MPI_COMM_WORLD); if (mpi_rank == 0) { for (int i = 1; i < mpi_world_size; i++) MPI_Isend(&input[offset[i]*C*H*W], stride_N[i]*C*H*W, MPI_FLOAT, i, 1, MPI_COMM_WORLD, &request); } else { MPI_Recv(input, stride_N[mpi_rank]*C*H*W, MPI_FLOAT, 0, 1, MPI_COMM_WORLD, &status); } // if (mpi_rank == 0) { #pragma omp parallel for num_threads(NUM_THREADS) collapse(3) schedule(dynamic) for (int n = 0; n < stride_N[mpi_rank]; ++n) { for (int k = 0; k < K; ++k) { // for (int t_oh = 0; t_oh < OH; t_oh += T_SIZE_OH) { // #pragma omp parallel for num_threads(NUM_THREADS) shared(N, K, OH, OW, R, S, C) schedule(dynamic) for (int oh = 0; oh < OH; ++oh) { // #pragma omp parallel for num_threads(NUM_THREADS) shared(N, K, OH, OW, R, S, C) schedule(dynamic) for (int ow = 0; ow < OW; ++ow) { // for (int t_ow = 0; t_ow < OW; t_ow += T_SIZE_OW) { // for (int oh = t_oh; oh < t_oh+T_SIZE_OH; ++oh) { // for (int ow = t_ow; ow < t_ow+T_SIZE_OW; ++ow) { float o = 0.f; for (int c = 0; c < C; ++c) { for (int r = 0; r < R; ++r) { for (int s = 0; s < S; ++s) { int h = oh * stride - pad + r * dilation; int w = ow * stride - pad + s * dilation; if (h < 0 || h >= H || w < 0 || w >= W) continue; float i = input[n * C * H * W + c * H * W + h * W + w]; float f = filter[k * C * R * S + c * R * S + r * S + s]; o += i * f; } } } output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; } // } // } } } } if (mpi_rank == 0) { for (int i = 1; i < mpi_world_size; i++) MPI_Recv(&output[offset[i]*K*OH*OW], stride_N[i]*K*OH*OW, MPI_FLOAT, i, 2, MPI_COMM_WORLD, &status); } else { MPI_Send(output, stride_N[mpi_rank]*K*OH*OW, MPI_FLOAT, 0, 2, MPI_COMM_WORLD); } } //} void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { }