#include "convolution.h" #include #include #include #include "util.h" #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 static float *input, *output, *filter; static float *in_d[MAX_NUM_GPU], *out_d[MAX_NUM_GPU], *fil_d[MAX_NUM_GPU]; static int N, C, H, W; static int K, R, S; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; static int num_devices = 1; static int size[2]; static int Nsize[MAX_NUM_GPU]; static int OH, OW; static MPI_Request request; static MPI_Status status; __global__ void conv( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { int OH = (_H + 2 * _pad - _dilation * (_R - 1) - 1) / _stride + 1; int OW = (_W + 2 * _pad - _dilation * (_S - 1) - 1) / _stride + 1; int n = blockIdx.x; int k = blockIdx.y; int oh = blockIdx.z; int ow = threadIdx.x; float o = 0.f; for (int c = 0; c < _C; ++c) { for (int r = 0; r < _R; ++r) { for (int s = 0; s < _S; ++s) { int h = oh * _stride - _pad + r * _dilation; int w = ow * _stride - _pad + s * _dilation; if (h < 0 || h >= _H || w < 0 || w >= _W) continue; float i = _input[n * _C * _H * _W + c * _H * _W + h * _W + w]; float f = _filter[k * _C * _R * _S + c * _R * _S + r * _S + s]; o += i * f; } } } _output[n * _K * OH * OW + k * OH * OW + oh * OW + ow] = o; } void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { int offset = 0; if (mpi_rank == 0) { input = _input; output = _output; filter = _filter; } if (mpi_rank == 0 && mpi_world_size == 2 && size[1] !=0) { MPI_Isend(&input[size[0] * C * H * W], size[1] * C * H * W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); MPI_Isend(filter, _K * _C * _R * _S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); if ( size[mpi_rank] < MAX_NUM_GPU) { num_devices = size[mpi_rank]; } } else if (mpi_rank == 1 && size[mpi_rank] != 0) { MPI_Recv(input, size[1] * C * H * W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); MPI_Recv(filter, _K * _C * _R * _S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); if ( size[mpi_rank] < MAX_NUM_GPU) { num_devices = size[mpi_rank]; } } offset = 0; for (int i=0; i>>(in_d[i], out_d[i], fil_d[i], Nsize[i], _C, _H, _W, _K, _R, _S, _pad, _dilation, _stride); } for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } // Download output from GPUs offset = 0; for (int i=0; i MAX_NUM_GPU)? N / 2 + 1 : N; size[1] = N - size[0]; #else size[0] = (mpi_world_size == 2 && N > MAX_NUM_GPU)? (int)(N * 0.60) : N; size[1] = N - size[0]; #endif if (size[mpi_rank] < MAX_NUM_GPU) { num_devices = size[mpi_rank]; for (int i = 0; i < size[mpi_rank]; i++) { Nsize[i] = 1; } } else { num_devices = MAX_NUM_GPU; for (int i = 0; i < MAX_NUM_GPU; i++) { Nsize[i] = size[mpi_rank] / MAX_NUM_GPU; if(i < size[mpi_rank] % MAX_NUM_GPU) { Nsize[i]++; } } } for (int i = 0 ; i < num_devices ; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&in_d[i], Nsize[i] * C * H * W * sizeof(float)) ); CUDA_CALL( cudaMalloc(&out_d[i], Nsize[i] * K * OH * OW * sizeof(float)) ); CUDA_CALL( cudaMalloc(&fil_d[i], K * C * R * S * sizeof(float)) ); } if (mpi_rank == 1 && size[mpi_rank] != 0) { alloc_tensor(&input, size[1], C, H, W); alloc_tensor(&output, size[1], K, OH, OW); alloc_tensor(&filter, _K, _C, _R, _S); } } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { }