#include "convolution.h" #include #include #include static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; void my_alloc_tensor(float **t, int D0, int D1, int D2, int D3) { *t = (float *) aligned_alloc(32, sizeof(float) * D0 * D1 * D2 * D3); if (*t == NULL) { printf("Failed to allocate memory for matrix.\n"); exit(0); } } int min(int a, int b) { return a < b ? a : b; } void compute_conv(int is, int ie) { // int tNums = omp_get_num_threads(); //#pragma omp parallel for num_threads(tNums) #pragma omp parallel for collapse(3) num_threads(100) schedule(dynamic) for (int n = is; n < ie; ++n) { for (int k = 0; k < K; ++k) { for (int oh = 0; oh < OH; ++oh) { for (int ow = 0; ow < OW; ++ow) { float o = 0.f; for (int c = 0; c < C; ++c) { for (int r = 0; r < R; ++r) { for (int s = 0; s < S; ++s) { int h = oh * stride - pad + r * dilation; int w = ow * stride - pad + s * dilation; if (h < 0 || h >= H || w < 0 || w >= W) continue; float i = input[n * C * H * W + c * H * W + h * W + w]; float f = filter[k * C * R * S + c * R * S + r * S + s]; o += i * f; } } } output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; } } } } } void compute_conv_org() { // int tNums = omp_get_num_threads(); //#pragma omp parallel for num_threads(tNums) #pragma omp parallel for collapse(3) num_threads(100) schedule(dynamic) for (int n = 0; n < N; ++n) { for (int k = 0; k < K; ++k) { for (int oh = 0; oh < OH; ++oh) { for (int ow = 0; ow < OW; ++ow) { float o = 0.f; for (int c = 0; c < C; ++c) { for (int r = 0; r < R; ++r) { for (int s = 0; s < S; ++s) { int h = oh * stride - pad + r * dilation; int w = ow * stride - pad + s * dilation; if (h < 0 || h >= H || w < 0 || w >= W) continue; float i = input[n * C * H * W + c * H * W + h * W + w]; float f = filter[k * C * R * S + c * R * S + r * S + s]; o += i * f; } } } output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; } } } } } void convolution(float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { input = _input; output = _output; filter = _filter; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if (mpi_world_size > 1){ // Calculate is and ie redundantly on every processes int is[mpi_world_size], ie[mpi_world_size]; for (int i = 0; i < mpi_world_size; i++) { is[i] = N / mpi_world_size * i; ie[i] = N / mpi_world_size * (i + 1); } ie[mpi_world_size - 1] = N; if (mpi_rank != 0) { my_alloc_tensor(&input, N, C, H, W); my_alloc_tensor(&output, N, K, OH, OW); my_alloc_tensor(&filter, K, C, R, S); } // Scatter A if (mpi_rank == 0) { for (int i = 1; i < mpi_world_size; i++) { MPI_Send(input+is[i]*C*H*W, (ie[i]-is[i])*C*H*W, MPI_FLOAT, i, 0, MPI_COMM_WORLD); } } else { MPI_Recv(input+is[mpi_rank]*C*H*W, (ie[mpi_rank]-is[mpi_rank])*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, nullptr); } // Broadcast B MPI_Bcast(filter, K*C*R*S, MPI_FLOAT, 0, MPI_COMM_WORLD); compute_conv(is[mpi_rank], ie[mpi_rank]); // Gather C if (mpi_rank == 0) { for (int i = 1; i < mpi_world_size; i++) { MPI_Recv(output+is[i]*K*OH*OW, (ie[i]-is[i])*K*OH*OW, MPI_FLOAT, i, 0, MPI_COMM_WORLD, nullptr); } } else { MPI_Send(output+is[mpi_rank]*K*OH*OW, (ie[mpi_rank]-is[mpi_rank])*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD); } } else { compute_conv_org(); } } void convolution_init(int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); } void convolution_final(int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { }