#include "convolution.h" #include #include #include "util.h" static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; int num_threads = 160; void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { input = _input; output = _output; filter = _filter; int size[2]; MPI_Request request; MPI_Status status; if ( mpi_world_size ==2) size[1] = _N/2; //TBC else size[1] = 0; size[0] = N - size[1]; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if (mpi_rank == 0 && mpi_world_size ==2) { MPI_Isend(&input[size[0]*C*H*W], size[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); MPI_Isend(filter, K*C*R*S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); } else if(mpi_world_size ==2) { alloc_tensor(&input, size[1], C, H, W); alloc_tensor(&output, size[1], K, OH, OW); alloc_tensor(&filter, K, C, R, S); MPI_Recv(input, size[1]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); MPI_Recv(filter, K*C*R*S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); } int CHW = C*H*W; int HW = H*W; if (C%8==0 && R==16 && S==16 && dilation==1 && pad==0 && stride==1) { //#pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic) //#pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic) #pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic) for (int n = 0; n < size[mpi_rank]; n++) { for (int k = 0; k < K; k++) { for (int oh = 0; oh < OH; oh++) { for (int ow = 0; ow < OW; ow++) { float o = 0.f; //for (int c = 0; c < C; c=c+16) { for (int c = 0; c < C; c=c+8) { for (int r = 0; r < 16; r++) { //int h = oh + r; //if (h < 0 || h >= H) continue; for (int s = 0; s < 16; s++) { //int w = ow + s ; //if (w < 0 || w >= W) continue; float i0 = input[n * CHW + c * HW + (oh+r) * W + ow+s]; float f0 = filter[k * C * 16 * 16 + c * 16 * 16 + r * 16 + s]; float i1 = input[n * CHW + (c+1) * HW + (oh+r) * W + ow+s]; float f1 = filter[k * C * 16 * 16 + (c+1) * 16 * 16 + r * 16 + s]; float i2 = input[n * CHW + (c+2) * HW + (oh+r) * W + ow+s]; float f2 = filter[k * C * 16 * 16 + (c+2) * 16 * 16 + r * 16 + s]; float i3 = input[n * CHW + (c+3) * HW + (oh+r) * W + ow+s]; float f3 = filter[k * C * 16 * 16 + (c+3) * 16 * 16 + r * 16 + s]; float i4 = input[n * CHW + (c+4) * HW + (oh+r) * W + ow+s]; float f4 = filter[k * C * 16 * 16 + (c+4) * 16 * 16 + r * 16 + s]; float i5 = input[n * CHW + (c+5) * HW + (oh+r) * W + ow+s]; float f5 = filter[k * C * 16 * 16 + (c+5) * 16 * 16 + r * 16 + s]; float i6 = input[n * CHW + (c+6) * HW + (oh+r) * W + ow+s]; float f6 = filter[k * C * 16 * 16 + (c+6) * 16 * 16 + r * 16 + s]; float i7 = input[n * CHW + (c+7) * HW + (oh+r) * W + ow+s]; float f7 = filter[k * C * 16 * 16 + (c+7) * 16 * 16 + r * 16 + s]; //float i8 = input[n * C * H * W + (c+8) * H * W + h * W + w]; //float f8 = filter[k * C * R * S + (c+8) * R * S + r * S + s]; //float i9 = input[n * C * H * W + (c+9) * H * W + h * W + w]; //float f9 = filter[k * C * R * S + (c+9) * R * S + r * S + s]; //float i10 = input[n * C * H * W + (c+10) * H * W + h * W + w]; //float f10 = filter[k * C * R * S + (c+10) * R * S + r * S + s]; //float i11 = input[n * C * H * W + (c+11) * H * W + h * W + w]; //float f11 = filter[k * C * R * S + (c+11) * R * S + r * S + s]; //float i12 = input[n * C * H * W + (c+12) * H * W + h * W + w]; //float f12 = filter[k * C * R * S + (c+12) * R * S + r * S + s]; //float i13 = input[n * C * H * W + (c+13) * H * W + h * W + w]; //float f13 = filter[k * C * R * S + (c+13) * R * S + r * S + s]; //float i14 = input[n * C * H * W + (c+14) * H * W + h * W + w]; //float f14 = filter[k * C * R * S + (c+14) * R * S + r * S + s]; //float i15 = input[n * C * H * W + (c+15) * H * W + h * W + w]; //float f15 = filter[k * C * R * S + (c+15) * R * S + r * S + s]; //o += i0*f0 + i1*f1 + i2*f2 + i3*f3 + i4*f4 + i5*f5 + i6*f6 + i7*f7 // +i8*f8 + i9*f9 + i10*f10 + i11*f11 + i12*f12 + i13*f13 + i14*f14 + i15*f15 ; o += i0*f0 + i1*f1 + i2*f2 + i3*f3 + i4*f4 + i5*f5 + i6*f6 + i7*f7; }//s }//r }//c output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; }//ow }//oh }//k }//n } else { #pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic) for (int n = 0; n < size[mpi_rank]; ++n) { for (int k = 0; k < K; ++k) { for (int oh = 0; oh < OH; ++oh) { for (int ow = 0; ow < OW; ++ow) { float o = 0.f; for (int c = 0; c < C; ++c) { for (int r = 0; r < R; ++r) { for (int s = 0; s < S; ++s) { int h = oh * stride - pad + r * dilation; int w = ow * stride - pad + s * dilation; if (h < 0 || h >= H || w < 0 || w >= W) continue; float i = input[n * C * H * W + c * H * W + h * W + w]; float f = filter[k * C * R * S + c * R * S + r * S + s]; o += i * f; }//s }//r }//c output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; }//ow }//oh }//k }//n } if (mpi_rank == 0 && mpi_world_size ==2) { MPI_Recv(&output[size[0]*K*OH*OW], size[1]*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status); } else if(mpi_world_size ==2) { MPI_Isend(output, size[1]*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request); } } void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { }