#include "convolution.h" #include #include #include "util.h" static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; static int num_threads; #if 0 void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { input = _input; output = _output; filter = _filter; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if (mpi_rank == 0) { for (int n = 0; n < N; ++n) { for (int k = 0; k < K; ++k) { for (int oh = 0; oh < OH; ++oh) { for (int ow = 0; ow < OW; ++ow) { float o = 0.f; for (int c = 0; c < C; ++c) { for (int r = 0; r < R; ++r) { for (int s = 0; s < S; ++s) { int h = oh * stride - pad + r * dilation; int w = ow * stride - pad + s * dilation; if (h < 0 || h >= H || w < 0 || w >= W) continue; float i = input[n * C * H * W + c * H * W + h * W + w]; float f = filter[k * C * R * S + c * R * S + r * S + s]; o += i * f; } } } output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; } } } } } } #else void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { input = _input; output = _output; filter = _filter; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; // Divide input to nodes (# of nodes: 1 ~ 2) int N_s[mpi_world_size], N_e[mpi_world_size]; int K_s[mpi_world_size], K_e[mpi_world_size]; if (N != 1) { for (int i = 0; i < mpi_world_size; i++) { N_s[i] = N / mpi_world_size * i; N_e[i] = N / mpi_world_size * (i + 1); K_s[i] = 0; K_e[i] = K; } N_e[mpi_world_size - 1] = N; } else if (K != 1) { // N = 1 for (int i = 0; i < mpi_world_size; i++) { N_s[i] = 0; N_e[i] = N; K_s[i] = K / mpi_world_size * i; K_e[i] = K / mpi_world_size * (i + 1); } K_e[mpi_world_size - 1] = K; } else { // N = 1 & K = 1 for (int i = 0; i < mpi_world_size; i++) { N_s[i] = 0; N_e[i] = N; K_s[i] = 0; K_e[i] = K; } if (mpi_world_size == 2) { //Use single node N_e[1] = 0; K_e[1] = 0; } } // Scatter if (mpi_rank == 0) { for (int i = 1; i < mpi_world_size; i++) { MPI_Send(&input[N_s[i] * C * H * W], ((N_e[i] - N_s[i]) * C * H * W), MPI_FLOAT, i, 0, MPI_COMM_WORLD); MPI_Send(&filter[K_s[i] * C * R * S], ((K_e[i] - K_s[i]) * C * R * S), MPI_FLOAT, i, 0, MPI_COMM_WORLD); } } else { alloc_tensor(&input, N, C, H, W); alloc_tensor(&output, N, K, OH, OW); alloc_tensor(&filter, K, C, R, S); MPI_Recv(&input[N_s[mpi_rank] * C * H * W], ((N_e[mpi_rank] - N_s[mpi_rank]) * C * H * W), MPI_FLOAT, 0, 0, MPI_COMM_WORLD, nullptr); MPI_Recv(&filter[K_s[mpi_rank] * C * R * S], ((K_e[mpi_rank] - K_s[mpi_rank]) * C * R * S), MPI_FLOAT, 0, 0, MPI_COMM_WORLD, nullptr); } // Compute convolution #pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic) for (int n = N_s[mpi_rank]; n < N_e[mpi_rank]; ++n) { for (int k = K_s[mpi_rank]; k < K_e[mpi_rank]; ++k) { for (int oh = 0; oh < OH; ++oh) { for (int ow = 0; ow < OW; ++ow) { float o = 0.f; for (int c = 0; c < C; ++c) { for (int r = 0; r < R; ++r) { for (int s = 0; s < S; ++s) { int h = oh * stride - pad + r * dilation; int w = ow * stride - pad + s * dilation; if (h < 0 || h >= H || w < 0 || w >= W) continue; float i = input[n * C * H * W + c * H * W + h * W + w]; float f = filter[k * C * R * S + c * R * S + r * S + s]; o += i * f; } } } output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; } } } } // Gather output if (mpi_rank == 0) { for (int i = 1; i < mpi_world_size; i++) { if (N != 1) { MPI_Recv(&output[N_s[i] * K_e[i] * OH * OW], ((N_e[i] - N_s[i]) * (K_e[i] - K_s[i]) * OH * OW), MPI_FLOAT, i, 1, MPI_COMM_WORLD, nullptr); } else if (K != 1) { MPI_Recv(&output[N_e[i] * K_s[i] * OH * OW], ((N_e[i] - N_s[i]) * (K_e[i] - K_s[i]) * OH * OW), MPI_FLOAT, i, 1, MPI_COMM_WORLD, nullptr); } else { MPI_Recv(&output[N_e[i] * K_e[i] * OH * OW], ((N_e[i] - N_s[i]) * (K_e[i] - K_s[i]) * OH * OW), MPI_FLOAT, i, 1, MPI_COMM_WORLD, nullptr); } } } else { if (N != 1) { MPI_Send(&output[N_s[mpi_rank] * K_e[mpi_rank] * OH * OW], ((N_e[mpi_rank] - N_s[mpi_rank]) * (K_e[mpi_rank] - K_s[mpi_rank]) * OH * OW), MPI_FLOAT, 0, 1, MPI_COMM_WORLD); } else if (K != 1) { MPI_Send(&output[N_e[mpi_rank] * K_s[mpi_rank] * OH * OW], ((N_e[mpi_rank] - N_s[mpi_rank]) * (K_e[mpi_rank] - K_s[mpi_rank]) * OH * OW), MPI_FLOAT, 0, 1, MPI_COMM_WORLD); } else { MPI_Send(&output[N_e[mpi_rank] * K_e[mpi_rank] * OH * OW], ((N_e[mpi_rank] - N_s[mpi_rank]) * (K_e[mpi_rank] - K_s[mpi_rank]) * OH * OW), MPI_FLOAT, 0, 1, MPI_COMM_WORLD); } } } #endif void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; num_threads = 100; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { }