#include "mat_mul.h" #include "util.h" #include #include #include #include static float *A, *B, *C; static int M, N, K; static int num_threads; static int mpi_rank, mpi_world_size; static int min(int x, int y) { return x < y ? x : y; } static int rows; #define ITILESIZE (25) #define JTILESIZE (1024) #define KTILESIZE (1024) static void mat_mul_omp() { #pragma omp parallel num_threads(num_threads) { int tid = omp_get_thread_num(); int is = rows / num_threads * tid + min(tid, rows % num_threads); int ie = rows / num_threads * (tid + 1) + min(tid + 1, rows % num_threads); for (int ii = is; ii < ie; ii += ITILESIZE) { for (int jj = 0; jj < N; jj += JTILESIZE) { for (int kk = 0; kk < K; kk += KTILESIZE) { for (int k = kk; k < min(K, kk + KTILESIZE); k++) { for (int i = ii; i < min(ie, ii + ITILESIZE); i++) { float ar = A[i * K + k]; for (int j = jj; j < min(N, jj + JTILESIZE); j+=1) { C[i * N + j] += ar * B[k * N + j]; } } } } } } } } #define MASTER 0 #define FROM_MASTER 1 #define FROM_WORKER 2 void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K, int _num_threads, int _mpi_rank, int _mpi_world_size) { // TODO: parallelize & optimize matrix multiplication on multi-node // You must allocate & initialize A, B, C for non-root processes M = _M, N = _N, K = _K; num_threads = _num_threads, mpi_rank = _mpi_rank, mpi_world_size = _mpi_world_size; int numworkers = mpi_world_size -1; int averrow, extra, offset; int NCA = K, NCB = N; int mtype; MPI_Status status; MPI_Request req; int dest, source; averrow = M/mpi_world_size; extra = M%mpi_world_size; rows = (mpi_rank == numworkers) ? averrow+extra : averrow; offset = averrow; int off[4], rrr[4]; if (mpi_rank == MASTER) { A = _A, B = _B, C = _C; mtype = FROM_MASTER; for(dest = 1; dest<=numworkers; dest++) { rows = (dest == numworkers) ? averrow + extra : averrow; rrr[dest] = rows; off[dest] = offset; MPI_Isend(&offset, 1, MPI_INT, dest, mtype, MPI_COMM_WORLD, &req); MPI_Isend(&rows, 1, MPI_INT, dest, mtype, MPI_COMM_WORLD, &req); MPI_Isend(&A[offset*NCA], rows*NCA, MPI_FLOAT, dest, mtype, MPI_COMM_WORLD, &req); MPI_Isend(&B[0], NCA*NCB, MPI_FLOAT, dest, mtype, MPI_COMM_WORLD, &req); offset += rows; } mtype = FROM_WORKER; for(int i = 1; i<=numworkers; i++) { source = i; MPI_Irecv(&C[off[i]*NCB], rrr[i]*NCB, MPI_FLOAT, source, mtype, MPI_COMM_WORLD, &req); } rows = averrow; mat_mul_omp(); for(int i = 1; i<=numworkers; i++) { MPI_Wait(&req, &status); } } if (mpi_rank > MASTER) { alloc_mat(&A, rows, K); alloc_mat(&B, K, N); alloc_mat(&C, rows, N); zero_mat(C, rows, N); mtype = FROM_MASTER; MPI_Recv(&offset, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD, &status); MPI_Recv(&rows, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD, &status); MPI_Recv(&A[0], rows*NCA, MPI_FLOAT, MASTER, mtype, MPI_COMM_WORLD, &status); MPI_Recv(&B[0], NCA*NCB, MPI_FLOAT, MASTER, mtype, MPI_COMM_WORLD, &status); #pragma omp parallel num_threads(num_threads) { int tid = omp_get_thread_num(); int is = rows / num_threads * tid + min(tid, rows % num_threads); int ie = rows / num_threads * (tid + 1) + min(tid + 1, rows % num_threads); for (int ii = is; ii < ie; ii += ITILESIZE) { for (int jj = 0; jj < N; jj += JTILESIZE) { for (int kk = 0; kk < K; kk += KTILESIZE) { for (int k = kk; k < min(K, kk + KTILESIZE); k++) { for (int i = ii; i < min(ie, ii + ITILESIZE); i++) { float ar = A[i * K + k]; for (int j = jj; j < min(N, jj + JTILESIZE); j+=1) { C[i * N + j] += ar * B[k * N + j]; } } } } } } } mtype = FROM_WORKER; MPI_Send(&C[0], rows*NCB, MPI_FLOAT, MASTER, mtype, MPI_COMM_WORLD); } }