#include "mat_mul.h" #include #include #include "util.h" #define CHECK_ERROR(err) \ if (err != CL_SUCCESS) { \ printf("[%s:%d] OpenCL error %d\n", __FILE__, __LINE__, err); \ exit(EXIT_FAILURE); \ } #define TS 32 #define WPT 8 #define WIDTH 8 #define MAX_DEV 4 #define RTS (TS/WPT) static cl_int err; static cl_platform_id platform; static cl_device_id device[MAX_DEV]; static cl_context context; static cl_command_queue queue[MAX_DEV]; static cl_program program; static cl_kernel kernel[MAX_DEV]; static cl_mem a_d[MAX_DEV], b_d[MAX_DEV], c_d[MAX_DEV]; //static cl_uint num_plaforms; static float *A, *B, *C; static int M, N, K; static int ndev; static int CopyBuf = 0; void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) { //A = _A, B = _B, C = _C; //M = _M, N = _N, K = _K; // Setup kernel arguments for(int i = 0; i < ndev; i++) { err = clSetKernelArg(kernel[i], 0, sizeof(cl_mem), &a_d[i]); CHECK_ERROR(err); err = clSetKernelArg(kernel[i], 1, sizeof(cl_mem), &b_d[i]); CHECK_ERROR(err); err = clSetKernelArg(kernel[i], 2, sizeof(cl_mem), &c_d[i]); CHECK_ERROR(err); err = clSetKernelArg(kernel[i], 3, sizeof(int), &M); CHECK_ERROR(err); err = clSetKernelArg(kernel[i], 4, sizeof(int), &N); CHECK_ERROR(err); err = clSetKernelArg(kernel[i], 5, sizeof(int), &K); CHECK_ERROR(err); } // Setup global work size and local work size size_t gws[2] = {(size_t)M/ndev, (size_t)N/WIDTH}, lws[2] = {TS, TS/WIDTH}; for (int i = 0; i < 2; ++i) { // By OpenCL spec, global work size should be MULTIPLE of local work size // Formula below achieve it // e.g., gws = 25, lws = 16, then (25 + 16 - 1) / 16 * 16 = 40 / 16 * 16 = 2 * 16 = 32 //printf("1.gws[%d]:%ld, lws[%d]:%ld\n", i, gws[i], i, lws[i]); gws[i] = (gws[i] + lws[i] - 1) / lws[i] * lws[i]; //printf("2.gws[%d]:%ld, lws[%d]:%ld\n", i, gws[i], i, lws[i]); } // Run kernel for(int i = 0; i < ndev; i++){ err = clEnqueueNDRangeKernel(queue[i], kernel[i], 2, NULL, gws, lws, 0, NULL, NULL); CHECK_ERROR(err); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for(int i = 0; i < ndev; i++){ err = clFinish(queue[i]); CHECK_ERROR(err); } } static void print_platform_info(cl_platform_id platform) { size_t sz; char *buf; CHECK_ERROR(clGetPlatformInfo(platform, CL_PLATFORM_NAME, 0, NULL, &sz)); buf = (char*)malloc(sz); CHECK_ERROR(clGetPlatformInfo(platform, CL_PLATFORM_NAME, sz, buf, NULL)); printf("Detected OpenCL platform: %s\n", buf); free(buf); } static void print_device_info(cl_device_id device) { size_t sz; char *buf; CHECK_ERROR(clGetDeviceInfo(device, CL_DEVICE_NAME, 0, NULL, &sz)); buf = (char*)malloc(sz); CHECK_ERROR(clGetDeviceInfo(device, CL_DEVICE_NAME, sz, buf, NULL)); printf("Detected OpenCL device: %s\n", buf); free(buf); } static cl_program create_and_build_program_with_source(cl_context context, cl_device_id device, const char *file_name) { FILE *file = fopen(file_name, "rb"); if (file == NULL) { printf("Failed to open %s\n", file_name); exit(EXIT_FAILURE); } // printf("Function : %s, Line : %d\n", __FUNCTION__, __LINE__); fflush(stdout); fseek(file, 0, SEEK_END); size_t source_size = ftell(file); rewind(file); char *source_code = (char*)malloc(source_size + 1); size_t ntotal = 0; while (ntotal < source_size) { int nread = fread(source_code, sizeof(char), source_size, file); ntotal += nread; } source_code[source_size] = '\0'; fclose(file); cl_program program = clCreateProgramWithSource(context, 1, (const char **)&source_code, &source_size, &err); CHECK_ERROR(err); free(source_code); err = clBuildProgram(program, 1, &device, "", NULL, NULL); if (err == CL_BUILD_PROGRAM_FAILURE) { size_t log_size; CHECK_ERROR(clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size)); char *log = (char*)malloc(log_size + 1); CHECK_ERROR(clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, log_size, log, NULL)); log[log_size] = 0; printf("Compile error:\n%s\n", log); free(log); } CHECK_ERROR(err); return program; } void mat_mul_init(float *_A, float *_B, float *_C, int _M, int _N, int _K) { // Get OpenCL platform err = clGetPlatformIDs(1, &platform, NULL); CHECK_ERROR(err); print_platform_info(platform); // Get OpenCL device err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, NULL, (unsigned int*) &ndev); err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, ndev, device, NULL); CHECK_ERROR(err); for(int i = 0; i < ndev; i++){ printf("GPU %d ", i); print_device_info(device[i]); } // Create OpenCL context context = clCreateContext(NULL, ndev, device, NULL, NULL, &err); CHECK_ERROR(err); // Create OpenCL command queue for(int i = 0; i < ndev; i++){ queue[i] = clCreateCommandQueue(context, device[i], 0, &err); CHECK_ERROR(err); } for(int i = 0; i < ndev; i++){ // Compile program from "kernel.cl" program = create_and_build_program_with_source(context, device[i], "kernel.cl"); // Extract kernel from compiled program kernel[i] = clCreateKernel(program, "sgemm", &err); CHECK_ERROR(err); } ///////////////////////////////////////////// M = (_M & (TS-1))? _M + (TS - (_M & (TS-1))) : _M; N = (_N & (TS-1))? _N + (TS - (_N & (TS-1))) : _N; K = (_K & (TS-1))? _K + (TS - (_K & (TS-1))) : _K; CopyBuf = 0; if(M == _M && K == _K){ A = _A; } else{ alloc_mat(&A, M, K); for (int i = 0; i < M; i++) { for (int j = 0; j < K; j++) { if(i<_M && j<_K) A[i * K + j] = _A[i * _K + j]; else A[i * K + j] = 0; } } CopyBuf = 1; } if(K == _K && N == _N){ B = _B; } else{ alloc_mat(&B, K, N); for (int i = 0; i < K; i++) { for (int j = 0; j < N; j++) { if(i<_K && j<_N) B[i * N + j] = _B[i * _N + j]; else B[i * N + j] = 0; } } CopyBuf = 1; } if(M == _M && N == _N){ C = _C; } else{ alloc_mat(&C, M, N); zero_mat(C, M, N); CopyBuf = 1; } //////////////////////////////////// int size_A = M * K * sizeof(float)/ndev, size_C = M * N * sizeof(float)/ndev; for(int i = 0; i < ndev; i++){ if(i == (ndev-1)){ size_A = M * K * sizeof(float) - size_A * i; size_C = M * N * sizeof(float) - size_C * i; } // Create GPU buffers a_d[i] = clCreateBuffer(context, CL_MEM_READ_WRITE, size_A, NULL, &err); CHECK_ERROR(err); b_d[i] = clCreateBuffer(context, CL_MEM_READ_WRITE, K * N * sizeof(float), NULL, &err); CHECK_ERROR(err); c_d[i] = clCreateBuffer(context, CL_MEM_READ_WRITE, size_C, NULL, &err); CHECK_ERROR(err); // Write to GPU; A (cpu) -> a_d (gpu), B (cpu) -> b_d (gpu) err = clEnqueueWriteBuffer(queue[i], a_d[i], CL_TRUE, 0, size_A, &A[i*M*K/ndev], 0, NULL, NULL); CHECK_ERROR(err); err = clEnqueueWriteBuffer(queue[i], b_d[i], CL_TRUE, 0, K * N * sizeof(float), B, 0, NULL, NULL); CHECK_ERROR(err); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for(int i = 0; i < ndev; i++){ err = clFinish(queue[i]); CHECK_ERROR(err); } } void mat_mul_final(float *_A, float *_B, float *_C, int _M, int _N, int _K) { int size_C = M * N * sizeof(float)/ndev; // Read from GPU; c_d (gpu) -> C (cpu) for(int i = 0; i < ndev; i++){ if(i == (ndev-1)){ size_C = M * N * sizeof(float) - size_C * i; } err = clEnqueueReadBuffer(queue[i], c_d[i], CL_TRUE, 0, size_C, &C[i*M*N/ndev], 0, NULL, NULL); CHECK_ERROR(err); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for(int i = 0; i < ndev; i++){ err = clFinish(queue[i]); CHECK_ERROR(err); } if(CopyBuf == 1){ for (int i = 0; i < _M; i++) { for (int j = 0; j < _N; j++) { _C[i * _N + j] = C[i * N + j]; } } } }