#include "mat_mul.h" #include #include #define NUM_GPUS 4 #define TILE_SIZE 32 #define WORK_PER_THREAD 8 #define VECTOR_WIDTH 8 #define REG_TILE_SIZE (TILE_SIZE / WORK_PER_THREAD) #define min(A, B) (((A)>(B))?(B):(A)) #define CHECK_ERROR(err) \ if (err != CL_SUCCESS) \ { \ printf("[%s:%d] OpenCL error %d\n", __FILE__, __LINE__, err); \ exit(EXIT_FAILURE); \ } static cl_int err; static cl_platform_id platform; static cl_device_id device[NUM_GPUS]; static cl_uint device_cnt; static cl_context context; static cl_command_queue queue[NUM_GPUS]; static cl_program program; static cl_kernel kernel[NUM_GPUS]; static cl_mem a_d[NUM_GPUS], b_d[NUM_GPUS], c_d[NUM_GPUS]; static float *A, *B, *C; static int M, N, K; static int row_start[NUM_GPUS]; static int row_end[NUM_GPUS]; static int num_rows[NUM_GPUS]; void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) { A = _A, B = _B, C = _C; M = _M, N = _N, K = _K; // Setup kernel arguments #pragma omp parallel for for(int i = 0; i < NUM_GPUS; i++) { err = clSetKernelArg(kernel[i], 0, sizeof(cl_mem), &a_d[i]); CHECK_ERROR(err); err = clSetKernelArg(kernel[i], 1, sizeof(cl_mem), &b_d[i]); CHECK_ERROR(err); err = clSetKernelArg(kernel[i], 2, sizeof(cl_mem), &c_d[i]); CHECK_ERROR(err); err = clSetKernelArg(kernel[i], 3, sizeof(int), &num_rows[i]); CHECK_ERROR(err); err = clSetKernelArg(kernel[i], 4, sizeof(int), &N); CHECK_ERROR(err); err = clSetKernelArg(kernel[i], 5, sizeof(int), &K); CHECK_ERROR(err); // Setup global work size and local work size // For kernel.cl size_t gws[2] = { (size_t)((num_rows[i] + WORK_PER_THREAD - 1) / WORK_PER_THREAD), (size_t)N }; size_t lws[2] = { (size_t)(TILE_SIZE / WORK_PER_THREAD), (size_t)(TILE_SIZE) }; // For kernel2.cl // size_t gws[2] = { (size_t)(num_rows[i]), (size_t)(N / VECTOR_WIDTH) }; // size_t lws[2] = { (size_t)(TILE_SIZE), (size_t)(TILE_SIZE / VECTOR_WIDTH) }; for (int i = 0; i < 2; ++i) { // By OpenCL spec, global work size should be MULTIPLE of local work size // Formula below achieve it // e.g., gws = 25, lws = 16, then (25 + 16 - 1) / 16 * 16 = 40 / 16 * 16 = 2 * 16 = 32 gws[i] = (gws[i] + lws[i] - 1) / lws[i] * lws[i]; } // printf("#%d gws = (%d, %d), lws = (%d, %d)\n", i, (int)gws[0], (int)gws[1], (int)lws[0], (int)lws[1]); // Run kernel err = clEnqueueNDRangeKernel(queue[i], kernel[i], 2, NULL, gws, lws, 0, NULL, NULL); CHECK_ERROR(err); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE #pragma omp parallel for for(int i = 0; i < NUM_GPUS; i++) { err = clFinish(queue[i]); CHECK_ERROR(err); } } static void print_platform_info(cl_platform_id platform) { size_t sz; char *buf; CHECK_ERROR(clGetPlatformInfo(platform, CL_PLATFORM_NAME, 0, NULL, &sz)); buf = (char *)malloc(sz); CHECK_ERROR(clGetPlatformInfo(platform, CL_PLATFORM_NAME, sz, buf, NULL)); printf("Detected OpenCL platform: %s\n", buf); free(buf); } static void print_device_info(cl_device_id device) { size_t sz; char *buf; CHECK_ERROR(clGetDeviceInfo(device, CL_DEVICE_NAME, 0, NULL, &sz)); buf = (char *)malloc(sz); CHECK_ERROR(clGetDeviceInfo(device, CL_DEVICE_NAME, sz, buf, NULL)); printf("Detected OpenCL device: %s\n", buf); free(buf); } static cl_program create_and_build_program_with_source(cl_context context, cl_device_id *device, const char *file_name) { FILE *file = fopen(file_name, "rb"); if (file == NULL) { printf("Failed to open %s\n", file_name); exit(EXIT_FAILURE); } fseek(file, 0, SEEK_END); size_t source_size = ftell(file); rewind(file); char *source_code = (char *)malloc(source_size + 1); size_t ntotal = 0; while (ntotal < source_size) { int nread = fread(source_code, sizeof(char), source_size, file); ntotal += nread; } source_code[source_size] = '\0'; fclose(file); cl_program program = clCreateProgramWithSource(context, 1, (const char **)&source_code, &source_size, &err); CHECK_ERROR(err); free(source_code); err = clBuildProgram(program, NUM_GPUS, device, "", NULL, NULL); CHECK_ERROR(err); if (err == CL_BUILD_PROGRAM_FAILURE) { size_t log_size; for(int i = 0; i < NUM_GPUS; i++) { CHECK_ERROR(clGetProgramBuildInfo(program, device[i], CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size)); char *log = (char *)malloc(log_size + 1); CHECK_ERROR(clGetProgramBuildInfo(program, device[i], CL_PROGRAM_BUILD_LOG, log_size, log, NULL)); log[log_size] = 0; printf("Compile error:\n%s\n", log); free(log); } } return program; } void mat_mul_init(float *A, float *B, float *C, int M, int N, int K) { // Get OpenCL platform err = clGetPlatformIDs(1, &platform, NULL); CHECK_ERROR(err); // print_platform_info(platform); // Get OpenCL device err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, NUM_GPUS, device, &device_cnt); CHECK_ERROR(err); // for(int i = 0; i < NUM_GPUS; i++) // { // print_device_info(device[i]); // } // Create OpenCL context context = clCreateContext(NULL, NUM_GPUS, device, NULL, NULL, &err); CHECK_ERROR(err); // Compile program from "kernel.cl" program = create_and_build_program_with_source(context, device, "kernel.cl"); // program = create_and_build_program_with_source(context, device, "kernel2.cl"); #pragma omp parallel for for(int i = 0; i < NUM_GPUS; i++) { // Create OpenCL command queue queue[i] = clCreateCommandQueue(context, device[i], 0, &err); CHECK_ERROR(err); // Extract kernel from compiled program kernel[i] = clCreateKernel(program, "sgemm", &err); CHECK_ERROR(err); // Calculate Distribution Unit row_start[i] = M / NUM_GPUS * i + min(i, M % NUM_GPUS); row_end[i] = M / NUM_GPUS * (i + 1) + min(i + 1, M % NUM_GPUS); num_rows[i] = row_end[i] - row_start[i]; // Create GPU buffers a_d[i] = clCreateBuffer(context, CL_MEM_READ_WRITE, num_rows[i] * K * sizeof(float), NULL, &err); CHECK_ERROR(err); b_d[i] = clCreateBuffer(context, CL_MEM_READ_WRITE, K * N * sizeof(float), NULL, &err); CHECK_ERROR(err); c_d[i] = clCreateBuffer(context, CL_MEM_READ_WRITE, num_rows[i] * N * sizeof(float), NULL, &err); CHECK_ERROR(err); err = clEnqueueWriteBuffer(queue[i], a_d[i], CL_FALSE, 0, num_rows[i] * K * sizeof(float), &A[row_start[i] * K], 0, NULL, NULL); CHECK_ERROR(err); err = clEnqueueWriteBuffer(queue[i], b_d[i], CL_FALSE, 0, K * N * sizeof(float), B, 0, NULL, NULL); CHECK_ERROR(err); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE #pragma omp parallel for for(int i = 0; i < NUM_GPUS; i++) { err = clFinish(queue[i]); CHECK_ERROR(err); } } void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) { // Read from GPU; c_d (gpu) -> C (cpu) #pragma omp parallel for for(int i = 0; i < NUM_GPUS; i++) { err = clEnqueueReadBuffer(queue[i], c_d[i], CL_FALSE, 0, num_rows[i] * N * sizeof(float), &C[row_start[i] * N], 0, NULL, NULL); CHECK_ERROR(err); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE #pragma omp parallel for for(int i = 0; i < NUM_GPUS; i++) { err = clFinish(queue[i]); CHECK_ERROR(err); } }