#include "mat_mul.h" #include #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define TILE_WIDTH 16 #define TS 32 // The square-root of the 2D tile-size (== work-group dims) #define WPT 8 // The amount of work-per-thread, i.e. the thread-coarsening factor #define RTS (TS/WPT) // The reduced tile-size in one dimension #define MAX_NUM_GPU 4 int num_devices = 0; __global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) { __shared__ float sm_M[TILE_WIDTH][TILE_WIDTH]; __shared__ float sm_N[TILE_WIDTH][TILE_WIDTH]; int blockx = blockIdx.x, blocky = blockIdx.y, threadx = threadIdx.x, thready = threadIdx.y, Row = blocky * TILE_WIDTH + thready, Col = blockx * TILE_WIDTH + threadx; float Pval = 0; for (int m = 0; m < (K-1)/TILE_WIDTH+1; ++m) { if (Row < M && m*TILE_WIDTH+threadx < K) sm_M[thready][threadx] = A[Row*K + m*TILE_WIDTH+threadx]; else sm_M[thready][threadx] = 0; if (Col < N && m*TILE_WIDTH+thready < K) sm_N[thready][threadx] = B[(m*TILE_WIDTH+thready)*N+Col]; else sm_N[thready][threadx] = 0; __syncthreads(); for (int k = 0; k < TILE_WIDTH; ++k) Pval += sm_M[thready][k] * sm_N[k][threadx]; __syncthreads(); } if (Row < M && Col < N) C[Row*N+Col] = Pval; } // Array of device (GPU) pointers static float *a_d[MAX_NUM_GPU]; static float *b_d[MAX_NUM_GPU]; static float *c_d[MAX_NUM_GPU]; static int M, N, K; static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU]; void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) { // Launch kernel on every GPU for (int i = 0; i < num_devices; i++) { int MSize = Mend[i] - Mbegin[i]; dim3 gridDim((N-1)/TILE_WIDTH+1, (MSize-1)/TILE_WIDTH+1, 1); dim3 blockDim(TILE_WIDTH, TILE_WIDTH, 1); CUDA_CALL( cudaSetDevice(i) ); sgemm<<>>(a_d[i], b_d[i], c_d[i], MSize , N, K); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) { M = _M, N = _N, K = _K; CUDA_CALL( cudaGetDeviceCount(&num_devices) ); //num_devices = 1; printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Mbegin[i] = (M / num_devices) * i; Mend[i] = (M / num_devices) * (i + 1); } Mend[num_devices - 1] = M; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) ); CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) ); CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) ); } // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K, (Mend[i] - Mbegin[i]) * K * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) { // Do any post-matmul cleanup work here. // Download C matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float), cudaMemcpyDeviceToHost) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } }