#include "convolution.h" #include #include #include "util.h" #include static float *__restrict input, *__restrict output, *__restrict filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; #define SINGLE_NODE (0) #define TIME_MEASURE (0) #define ALIGN_UP(_A,_SIZE) ((((_A) + (_SIZE) - 1) / (_SIZE)) * (_SIZE)) #define MIN(_A,_B) ((_A) < (_B) ? (_A) : (_B)) #define OPTIMAL_FILTER_SIZE (16) #define ENABLE_PREFETCH (1) #if (ENABLE_PREFETCH) #define MM_PREFETCH(__A, __B) _mm_prefetch(__A, __B) #else #define MM_PREFETCH(__A, __B) #endif static inline void Calculation_Opt3(int nStart, int nEnd) { const int HW = H * W; const int CHW = C * HW; const int RS = 16 * 16; const int CRS = C * RS; const int OHOW = OH * OW; const int KOHOW = K * OHOW; #if 0 float* pnInputend = input + N * C * H * W; float* pnFilterend = filter + K * C * H * W; float* pnoutputend = output + N * K * OH * OW; #endif #if (SINGLE_NODE) zero_tensor((float*)output, N, K, OH, OW); #else zero_tensor((float*)output, N/2, K, OH, OW); #endif // printf("Optimal calculation :) \n"); // N, C, K, H, W: 32 이상의 적당히 큰 2의 지수승 // R, S: 16 #pragma omp parallel for num_threads(100) collapse(3) schedule(static) #if (!SINGLE_NODE) for (int n = nStart; n < nEnd; ++n) { #else for (int n = 0; n < N; ++n) { #endif //printf ("N : %d\n", n); for (int k = 0; k < K; ++k) { for (int c = 0; c < C; c++) { const float* pnStartFilter = &filter[k * CRS + (c * RS)]; const __m512 b0 = _mm512_load_ps(&pnStartFilter[0]); const __m512 b1 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 1]); const __m512 b2 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 2]); const __m512 b3 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 3]); const __m512 b4 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 4]); const __m512 b5 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 5]); const __m512 b6 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 6]); const __m512 b7 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 7]); const __m512 b8 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 8]); const __m512 b9 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 9]); const __m512 b10 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 10]); const __m512 b11 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 11]); const __m512 b12 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 12]); const __m512 b13 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 13]); const __m512 b14 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 14]); const __m512 b15 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 15]); const int cHW = c * HW; const int nCHW_cHW = n * CHW + cHW; const int nKOHOW_kOHOW = n * KOHOW + k * OHOW; MM_PREFETCH((const char*)&input[nCHW_cHW], _MM_HINT_T0); for (int oh = 0; oh < OH; ++oh) { const int nKOHOW_kOHOW_ohOW = nKOHOW_kOHOW + oh * OW; const int nCHW_ohW_cHW = nCHW_cHW + oh * W; for (int ow = 0; ow < OW; ++ow) { const float* pnStartInput = &input[nCHW_ohW_cHW + ow]; //printf ("ow : %d\n", ow); __m512 c0 = _mm512_setzero_ps(); __m512 c1 = c0; __m512 c2 = c0; __m512 c3 = c0; c0 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[0]), b0, c0); c1 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 1]), b1, c1); c2 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 2]), b2, c2); c3 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 3]), b3, c3); c0 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 4]), b4, c0); c1 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 5]), b5, c1); c2 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 6]), b6, c2); c3 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 7]), b7, c3); c0 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 8]), b8, c0); c1 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 9]), b9, c1); c2 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 10]), b10, c2); c3 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 11]), b11, c3); c0 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 12]), b12, c0); c1 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 13]), b13, c1); c2 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 14]), b14, c2); c3 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 15]), b15, c3); const __m512 dot01 = _mm512_add_ps(c0, c1); const __m512 dot23 = _mm512_add_ps(c2, c3); const __m512 dot0123 = _mm512_add_ps(dot01, dot23); output[nKOHOW_kOHOW_ohOW + ow] += _mm512_reduce_add_ps(dot0123); } } } } } } static inline void Calculation_Opt2(int nStart, int nEnd) { const int HW = H * W; const int CHW = C * HW; const int RS = 16 * 16; const int CRS = C * RS; const int OHOW = OH * OW; const int KOHOW = K * OHOW; #if 0 float* pnInputend = input + N * C * H * W; float* pnFilterend = filter + K * C * H * W; float* pnoutputend = output + N * K * OH * OW; #endif // printf("Optimal calculation :) \n"); // N, C, K, H, W: 32 이상의 적당히 큰 2의 지수승 // R, S: 16 #pragma omp parallel for collapse(3) schedule(static) #if (!SINGLE_NODE) for (int n = nStart; n < nEnd; ++n) { #else for (int n = 0; n < N; ++n) { #endif //printf ("N : %d\n", n); for (int k = 0; k < K; ++k) { for (int oh = 0; oh < OH; ++oh) { const int kCRS = k * CRS; const int nKOHOW_kOHOW_ohOW = n * KOHOW + k * OHOW + oh * OW; const int nCHW_ohW = n * CHW + oh * W; MM_PREFETCH((const char*)&input[nCHW_ohW], _MM_HINT_T0); MM_PREFETCH((const char*)&filter[kCRS], _MM_HINT_T0); for (int ow = 0; ow < OW; ++ow) { const int nCHW_ohW_ow = nCHW_ohW + ow; //printf ("ow : %d\n", ow); __m512 c0 = _mm512_setzero_ps(); __m512 c1 = c0; __m512 c2 = c0; __m512 c3 = c0; #pragma GCC unroll 4 for (int c = 0; c < C; c++) { const float* pnStartInput = &input[nCHW_ohW_ow + c * HW]; const float* pnStartFilter = &filter[kCRS + (c * RS)]; // printf ("Input & filter i : %x f : %x \n", pnStartInput, pnStartFilter); #if 0 if (pnInputend < &pnStartInput[W * 16]) { printf ("Input Assert! n : %d k : %d oh : %d ow : %d c :%d \n", n, k, oh, ow, c); } if (pnFilterend < &pnStartFilter[OPTIMAL_FILTER_SIZE * 15]) { printf ("Filter Assert! n : %d k : %d oh : %d ow : %d c :%d \n", n, k, oh, ow, c); } #endif const __m512 b0 = _mm512_load_ps(&pnStartFilter[0]); const __m512 b1 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 1]); const __m512 b2 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 2]); const __m512 b3 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 3]); const __m512 b4 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 4]); const __m512 b5 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 5]); const __m512 b6 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 6]); const __m512 b7 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 7]); c0 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[0]), b0, c0); c1 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 1]), b1, c1); c2 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 2]), b2, c2); c3 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 3]), b3, c3); c0 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 4]), b4, c0); c1 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 5]), b5, c1); c2 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 6]), b6, c2); c3 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 7]), b7, c3); const __m512 b8 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 8]); const __m512 b9 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 9]); const __m512 b10 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 10]); const __m512 b11 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 11]); const __m512 b12 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 12]); const __m512 b13 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 13]); const __m512 b14 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 14]); const __m512 b15 = _mm512_load_ps(&pnStartFilter[OPTIMAL_FILTER_SIZE * 15]); c0 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 8]), b8, c0); c1 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 9]), b9, c1); c2 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 10]), b10, c2); c3 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 11]), b11, c3); c0 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 12]), b12, c0); c1 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 13]), b13, c1); c2 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 14]), b14, c2); c3 = _mm512_fmadd_ps(_mm512_loadu_ps(&pnStartInput[W * 15]), b15, c3); } const __m512 dot01 = _mm512_add_ps(c0, c1); const __m512 dot23 = _mm512_add_ps(c2, c3); const __m512 dot0123 = _mm512_add_ps(dot01, dot23); output[nKOHOW_kOHOW_ohOW + ow] = _mm512_reduce_add_ps(dot0123); } } } } } static inline void Calculation_Opt(int nStart, int nEnd) { const int HW = H * W; const int CHW = C * HW; const int RS = 16 * 16; const int CRS = C * RS; const int OHOW = OH * OW; const int KOHOW = K * OHOW; // printf("Optimal calculation :) \n"); // N, C, K, H, W: 32 이상의 적당히 큰 2의 지수승 // R, S: 16 #pragma omp parallel for collapse(3) schedule(dynamic) #if (!SINGLE_NODE) for (int n = nStart; n < nEnd; ++n) { #else for (int n = 0; n < N; ++n) { #endif for (int k = 0; k < K; ++k) { for (int oh = 0; oh < OH; ++oh) { const int NCHW = n * CHW; //const int nKOHOW = n * KOHOW; const int kCRS = k * CRS; // const int kKOHOW_kOHOW = nKOHOW + k * OHOW; const int kKOHOW_kOHOW_ohOW = n * KOHOW + k * OHOW + oh * OW; const int rBound = MIN(16, H - oh); for (int ow = 0; ow < OW; ++ow) { float o = 0.f; o = 0.f; const int sBound = MIN(16, W - ow); for (int c = 0; c < C; ++c) { const int NCHW_CHW = NCHW + c * HW; const int kCRS_cRS = kCRS + (c * RS); for (int r = 0; r < rBound; ++r) { const int h = oh + r; const int kCRS_cRS_rS = kCRS_cRS + r * 16; const int NCHW_CHW_hW_ow = NCHW_CHW + h * W + ow; for (int s = 0; s < sBound; ++s) { o += input[NCHW_CHW_hW_ow + s] * filter[kCRS_cRS_rS + s]; } } } output[kKOHOW_kOHOW_ohOW + ow] = o; } } } } } static void Calculation_Pad0_D1_S1(int nStart, int nEnd) { const int HW = H * W; const int CHW = C * HW; const int RS = R * S; const int CRS = C * RS; const int OHOW = OH * OW; const int KOHOW = K * OHOW; #pragma omp parallel for collapse(3) #if (!SINGLE_NODE) for (int n = nStart; n < nEnd; ++n) { #else for (int n = 0; n < N; ++n) { #endif for (int k = 0; k < K; ++k) { for (int oh = 0; oh < OH; ++oh) { const int NCHW = n * CHW; //const int nKOHOW = n * KOHOW; const int kCRS = k * CRS; // const int kKOHOW_kOHOW = nKOHOW + k * OHOW; const int kKOHOW_kOHOW_ohOW = n * KOHOW + k * OHOW + oh * OW; const int rBound = MIN(R, H - oh); for (int ow = 0; ow < OW; ++ow) { float o = 0.f; const int sBound = MIN(S, W - ow); for (int c = 0; c < C; ++c) { const int NCHW_CHW = NCHW + c * HW; const int kCRS_cRS = kCRS + c * RS; for (int r = 0; r < rBound; ++r) { const int h = oh + r; const int kCRS_cRS_rS = kCRS_cRS + r * S; const int NCHW_CHW_hW_ow = NCHW_CHW + h * W + ow; for (int s = 0; s < sBound; ++s) { o += input[NCHW_CHW_hW_ow + s] * filter[kCRS_cRS_rS + s]; } } } output[kKOHOW_kOHOW_ohOW + ow] = o; } } } } } static void Calculation_Pad0_Dilation1(int nStart, int nEnd) { const int HW = H * W; const int CHW = C * HW; const int RS = R * S; const int CRS = C * RS; const int OHOW = OH * OW; const int KOHOW = K * OHOW; #pragma omp parallel for collapse(3) #if (!SINGLE_NODE) for (int n = nStart; n < nEnd; ++n) { #else for (int n = 0; n < N; ++n) { #endif for (int k = 0; k < K; ++k) { for (int oh = 0; oh < OH; ++oh) { const int NCHW = n * CHW; //const int nKOHOW = n * KOHOW; const int kCRS = k * CRS; // const int kKOHOW_kOHOW = nKOHOW + k * OHOW; const int kKOHOW_kOHOW_ohOW = n * KOHOW + k * OHOW + oh * OW; const int hi = oh * stride; for (int ow = 0; ow < OW; ++ow) { float o = 0.f; const int wi = ow * stride; for (int c = 0; c < C; ++c) { const int NCHW_CHW = NCHW + c * HW; const int kCRS_cRS = kCRS + c * RS; for (int r = 0; r < R; ++r) { const int h = hi + r; const int kCRS_cRS_rS = kCRS_cRS + r * S; if (h >= H ) continue; const int NCHW_CHW_hW = NCHW_CHW + h * W; for (int s = 0; s < S; ++s) { const int w = wi + s; if (w >= W) continue; //float i = input[NCHW_CHW_hW + w]; //float f = filter[kCRS_cRS_rS + s]; o += input[NCHW_CHW_hW + w] * filter[kCRS_cRS_rS + s]; } } } output[kKOHOW_kOHOW_ohOW + ow] = o; } } } } } static void Calculation_Stride1(int nStart, int nEnd) { const int HW = H * W; const int CHW = C * HW; const int RS = R * S; const int CRS = C * RS; const int OHOW = OH * OW; const int KOHOW = K * OHOW; #pragma omp parallel for collapse(3) #if (!SINGLE_NODE) for (int n = nStart; n < nEnd; ++n) { #else for (int n = 0; n < N; ++n) { #endif for (int k = 0; k < K; ++k) { for (int oh = 0; oh < OH; ++oh) { const int NCHW = n * CHW; //const int nKOHOW = n * KOHOW; const int kCRS = k * CRS; // const int kKOHOW_kOHOW = nKOHOW + k * OHOW; const int kKOHOW_kOHOW_ohOW = n * KOHOW + k * OHOW + oh * OW; const int hi = oh - pad; for (int ow = 0; ow < OW; ++ow) { float o = 0.f; const int wi = ow - pad; for (int c = 0; c < C; ++c) { const int NCHW_CHW = NCHW + c * HW; const int kCRS_cRS = kCRS + c * RS; for (int r = 0; r < R; ++r) { const int h = hi + r * dilation; const int kCRS_cRS_rS = kCRS_cRS + r * S; if (h < 0 || h >= H ) continue; const int NCHW_CHW_hW = NCHW_CHW + h * W; for (int s = 0; s < S; ++s) { const int w = wi + s * dilation; if (w < 0 || w >= W) continue; //float i = input[NCHW_CHW_hW + w]; //float f = filter[kCRS_cRS_rS + s]; o += input[NCHW_CHW_hW + w] * filter[kCRS_cRS_rS + s]; } } } output[kKOHOW_kOHOW_ohOW + ow] = o; } } } } } static void Calculation_Pad0(int nStart, int nEnd) { const int HW = H * W; const int CHW = C * HW; const int RS = R * S; const int CRS = C * RS; const int OHOW = OH * OW; const int KOHOW = K * OHOW; #pragma omp parallel for collapse(3) #if (!SINGLE_NODE) for (int n = nStart; n < nEnd; ++n) { #else for (int n = 0; n < N; ++n) { #endif for (int k = 0; k < K; ++k) { for (int oh = 0; oh < OH; ++oh) { const int NCHW = n * CHW; //const int nKOHOW = n * KOHOW; const int kCRS = k * CRS; // const int kKOHOW_kOHOW = nKOHOW + k * OHOW; const int kKOHOW_kOHOW_ohOW = n * KOHOW + k * OHOW + oh * OW; const int hi = oh * stride; for (int ow = 0; ow < OW; ++ow) { float o = 0.f; const int wi = ow * stride; for (int c = 0; c < C; ++c) { const int NCHW_CHW = NCHW + c * HW; const int kCRS_cRS = kCRS + c * RS; for (int r = 0; r < R; ++r) { const int h = hi + r * dilation; const int kCRS_cRS_rS = kCRS_cRS + r * S; if (h >= H ) continue; const int NCHW_CHW_hW = NCHW_CHW + h * W; for (int s = 0; s < S; ++s) { const int w = wi + s * dilation; if (w >= W) continue; //float i = input[NCHW_CHW_hW + w]; //float f = filter[kCRS_cRS_rS + s]; o += input[NCHW_CHW_hW + w] * filter[kCRS_cRS_rS + s]; } } } output[kKOHOW_kOHOW_ohOW + ow] = o; } } } } } static void Calculation_Dilation1(int nStart, int nEnd) { const int HW = H * W; const int CHW = C * HW; const int RS = R * S; const int CRS = C * RS; const int OHOW = OH * OW; const int KOHOW = K * OHOW; #pragma omp parallel for collapse(3) #if (!SINGLE_NODE) for (int n = nStart; n < nEnd; ++n) { #else for (int n = 0; n < N; ++n) { #endif for (int k = 0; k < K; ++k) { for (int oh = 0; oh < OH; ++oh) { const int NCHW = n * CHW; //const int nKOHOW = n * KOHOW; const int kCRS = k * CRS; // const int kKOHOW_kOHOW = nKOHOW + k * OHOW; const int kKOHOW_kOHOW_ohOW = n * KOHOW + k * OHOW + oh * OW; const int hi = oh * stride - pad; for (int ow = 0; ow < OW; ++ow) { float o = 0.f; const int wi = ow * stride - pad; for (int c = 0; c < C; ++c) { const int NCHW_CHW = NCHW + c * HW; const int kCRS_cRS = kCRS + c * RS; for (int r = 0; r < R; ++r) { const int h = hi + r; const int kCRS_cRS_rS = kCRS_cRS + r * S; if (h < 0 || h >= H ) continue; const int NCHW_CHW_hW = NCHW_CHW + h * W; for (int s = 0; s < S; ++s) { const int w = wi + s; if (w < 0 || w >= W) continue; //float i = input[NCHW_CHW_hW + w]; //float f = filter[kCRS_cRS_rS + s]; o += input[NCHW_CHW_hW + w] * filter[kCRS_cRS_rS + s]; } } } output[kKOHOW_kOHOW_ohOW + ow] = o; } } } } } static void Calculation_Base(int nStart, int nEnd) { const int HW = H * W; const int CHW = C * HW; const int RS = R * S; const int CRS = C * RS; const int OHOW = OH * OW; const int KOHOW = K * OHOW; #pragma omp parallel for collapse(3) #if (!SINGLE_NODE) for (int n = nStart; n < nEnd; ++n) { #else for (int n = 0; n < N; ++n) { #endif for (int k = 0; k < K; ++k) { for (int oh = 0; oh < OH; ++oh) { const int NCHW = n * CHW; //const int nKOHOW = n * KOHOW; const int kCRS = k * CRS; // const int kKOHOW_kOHOW = nKOHOW + k * OHOW; const int kKOHOW_kOHOW_ohOW = n * KOHOW + k * OHOW + oh * OW; const int hi = oh * stride - pad; for (int ow = 0; ow < OW; ++ow) { float o = 0.f; const int wi = ow * stride - pad; for (int c = 0; c < C; ++c) { const int NCHW_CHW = NCHW + c * HW; const int kCRS_cRS = kCRS + c * RS; for (int r = 0; r < R; ++r) { const int h = hi + r * dilation; const int kCRS_cRS_rS = kCRS_cRS + r * S; if (h < 0 || h >= H ) continue; const int NCHW_CHW_hW = NCHW_CHW + h * W; for (int s = 0; s < S; ++s) { const int w = wi + s * dilation; if (w < 0 || w >= W) continue; //float i = input[NCHW_CHW_hW + w]; //float f = filter[kCRS_cRS_rS + s]; o += input[NCHW_CHW_hW + w] * filter[kCRS_cRS_rS + s]; } } } output[kKOHOW_kOHOW_ohOW + ow] = o; } } } } } static inline void Calculation(int start, int end) { if (pad == 0) { if (dilation == 1) { if (stride == 1) { // [TODO] optimal algorithm Calculation_Pad0_D1_S1(start, end); } else { Calculation_Pad0_Dilation1(start, end); } } else { Calculation_Pad0(start, end); } } else if (dilation == 1) { Calculation_Dilation1(start, end); } else if (stride == 1) { Calculation_Stride1(start, end); } else { Calculation_Base(start, end); } } #define OPTIMAL_NODE_CNT (2) #define MPI_CH_CNT (4) #define MPI_FILTER_CH_CNT (MPI_CH_CNT * OPTIMAL_NODE_CNT) void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { #if (!SINGLE_NODE) MPI_Status stMpiStatus; MPI_Request stMpiRequest[12]; #endif if (_pad == 0 && _dilation == 1 && _stride == 1 #if (!SINGLE_NODE) && mpi_world_size == OPTIMAL_NODE_CNT #endif && (((N | C | K | H | W) & (32 - 1)) == 0) && R == 16 && S == 16) { #if (!SINGLE_NODE) const int SendNodeSize = N / OPTIMAL_NODE_CNT / MPI_CH_CNT; const int SendFilterSize = K / MPI_CH_CNT; #endif // Optimal path if (mpi_rank == 0) { input = _input; output = _output; filter = _filter; #if (!SINGLE_NODE) MPI_Isend(input + (SendNodeSize * (MPI_CH_CNT + 0)) * C * H * W, (SendNodeSize) * C * H * W , MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &stMpiRequest[0]); MPI_Isend(input + (SendNodeSize * (MPI_CH_CNT + 1)) * C * H * W, (SendNodeSize) * C * H * W , MPI_FLOAT, 1, 1, MPI_COMM_WORLD, &stMpiRequest[1]); MPI_Isend(input + (SendNodeSize * (MPI_CH_CNT + 2)) * C * H * W, (SendNodeSize) * C * H * W , MPI_FLOAT, 1, 2, MPI_COMM_WORLD, &stMpiRequest[2]); MPI_Isend(input + (SendNodeSize * (MPI_CH_CNT + 3)) * C * H * W, (SendNodeSize) * C * H * W , MPI_FLOAT, 1, 3, MPI_COMM_WORLD, &stMpiRequest[3]); MPI_Isend(filter , SendFilterSize * C * R * S, MPI_FLOAT, 1, 4, MPI_COMM_WORLD, &stMpiRequest[4]); MPI_Isend(filter + SendFilterSize * C * R * S , SendFilterSize * C * R * S, MPI_FLOAT, 1, 5, MPI_COMM_WORLD, &stMpiRequest[5]); MPI_Isend(filter + SendFilterSize * 2 * C * R * S, SendFilterSize * C * R * S, MPI_FLOAT, 1, 6, MPI_COMM_WORLD, &stMpiRequest[6]); MPI_Isend(filter + SendFilterSize * 3 * C * R * S, SendFilterSize * C * R * S, MPI_FLOAT, 1, 7, MPI_COMM_WORLD, &stMpiRequest[7]); MPI_Irecv(output + (SendNodeSize * (MPI_CH_CNT + 0)) * K * OH * OW, (SendNodeSize) * K * OH * OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &stMpiRequest[8]); MPI_Irecv(output + (SendNodeSize * (MPI_CH_CNT + 1)) * K * OH * OW, (SendNodeSize) * K * OH * OW, MPI_FLOAT, 1, 1, MPI_COMM_WORLD, &stMpiRequest[9]); MPI_Irecv(output + (SendNodeSize * (MPI_CH_CNT + 2)) * K * OH * OW, (SendNodeSize) * K * OH * OW, MPI_FLOAT, 1, 2, MPI_COMM_WORLD, &stMpiRequest[10]); MPI_Irecv(output + (SendNodeSize * (MPI_CH_CNT + 3)) * K * OH * OW, (SendNodeSize) * K * OH * OW, MPI_FLOAT, 1, 3, MPI_COMM_WORLD, &stMpiRequest[11]); //printf("Master receive : %x, %x, %x, %x\n", (SendNodeSize * MPI_CH_CNT + 0), (SendNodeSize * MPI_CH_CNT + 1), (SendNodeSize * MPI_CH_CNT + 2), (SendNodeSize * MPI_CH_CNT + 3)); #if (TIME_MEASURE) printf("Master send started : %f sec\n", timer_stop(0)); #endif #endif // printf ("Optimized path! SendNodeOffset : %d, mpi_world_size : %d", N / OPTIMAL_NODE_CNT / MPI_CH_CNT, mpi_world_size); #if (!SINGLE_NODE) Calculation_Opt3(0, N / OPTIMAL_NODE_CNT); #else Calculation_Opt3(0, N); #endif #if (TIME_MEASURE) printf("Master calculation complete : %f sec\n", timer_stop(0)); #endif #if (!SINGLE_NODE) #pragma GCC unroll 12 for(int i = 0; i < 12; i++) { MPI_Wait(&stMpiRequest[i], &stMpiStatus); } #if (TIME_MEASURE) printf("Master recieve complete : %f sec\n", timer_stop(0)); #endif #endif } #if (!SINGLE_NODE) else { // printf("Check memory pointer, input : %x Filter :% x output : %x\n", input, filter, output); MPI_Irecv(input + (SendNodeSize * 0) * C * H * W, SendNodeSize * C * H * W , MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &stMpiRequest[0]); MPI_Irecv(input + (SendNodeSize * 1) * C * H * W, SendNodeSize * C * H * W , MPI_FLOAT, 0, 1, MPI_COMM_WORLD, &stMpiRequest[1]); MPI_Irecv(input + (SendNodeSize * 2) * C * H * W, SendNodeSize * C * H * W , MPI_FLOAT, 0, 2, MPI_COMM_WORLD, &stMpiRequest[2]); MPI_Irecv(input + (SendNodeSize * 3) * C * H * W, SendNodeSize * C * H * W , MPI_FLOAT, 0, 3, MPI_COMM_WORLD, &stMpiRequest[3]); MPI_Irecv(filter + SendFilterSize * 0 * C * R * S, SendFilterSize * C * R * S, MPI_FLOAT, 0, 4, MPI_COMM_WORLD, &stMpiRequest[4]); MPI_Irecv(filter + SendFilterSize * 1 * C * R * S, SendFilterSize * C * R * S, MPI_FLOAT, 0, 5, MPI_COMM_WORLD, &stMpiRequest[5]); MPI_Irecv(filter + SendFilterSize * 2 * C * R * S, SendFilterSize * C * R * S, MPI_FLOAT, 0, 6, MPI_COMM_WORLD, &stMpiRequest[6]); MPI_Irecv(filter + SendFilterSize * 3 * C * R * S, SendFilterSize * C * R * S, MPI_FLOAT, 0, 7, MPI_COMM_WORLD, &stMpiRequest[7]); #pragma GCC unroll 8 for(int i = 0; i < 8; i++) { MPI_Wait(&stMpiRequest[i], &stMpiStatus); } #if (TIME_MEASURE) printf("Slave receive complete : %f sec\n", timer_stop(0)); #endif Calculation_Opt3(0, N / OPTIMAL_NODE_CNT); // printf("Slave set from output[%d], stride all : [%d]\n", SendNodeOffset, SendNodeOffset * KOHOW); // printf("Slave set end output[%d], stride all : [%d]\n", N, N * KOHOW); #if (TIME_MEASURE) printf("Slave calculation complete : %f sec\n", timer_stop(0)); #endif // printf("Slave send from output[%d]\n", SendNodeOffset * C * OH * OW); MPI_Isend(output , SendNodeSize * K * OH * OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &stMpiRequest[0]); MPI_Isend(output + (SendNodeSize * 1) * K * OH * OW, SendNodeSize * K * OH * OW, MPI_FLOAT, 0, 1, MPI_COMM_WORLD, &stMpiRequest[1]); MPI_Isend(output + (SendNodeSize * 2) * K * OH * OW, SendNodeSize * K * OH * OW, MPI_FLOAT, 0, 2, MPI_COMM_WORLD, &stMpiRequest[2]); MPI_Isend(output + (SendNodeSize * 3) * K * OH * OW, SendNodeSize * K * OH * OW, MPI_FLOAT, 0, 3, MPI_COMM_WORLD, &stMpiRequest[3]); //printf ("FirstData : %3.f, %3.f, %3.f, %3.f\n", *(output + (SendNodeSize *0) * K * OH * OW),*(output + (SendNodeSize *1) * K * OH * OW),*(output + (SendNodeSize *2) * K * OH * OW),*(output + (SendNodeSize *3) * K * OH * OW)); //printf("Slave send : %x, %x, %x, %x\n",(SendNodeSize * 0) * K * OH * OW, (SendNodeSize * 1) * K * OH * OW, (SendNodeSize * 2) * K * OH * OW, (SendNodeSize * 3) * K * OH * OW); #pragma GCC unroll 4 for(int i = 0; i < 4; i++) { MPI_Wait(&stMpiRequest[i], &stMpiStatus); } #if (TIME_MEASURE) printf("Slave send complete : %f sec\n", timer_stop(0)); #endif } #endif // SINGLE_NODE } else { #if (!SINGLE_NODE) const int SendNodeSize = N / 2; const int SendNodeOffset = mpi_world_size > 1 ? (N - SendNodeSize) : N; #endif if (mpi_rank == 0) { input = _input; output = _output; filter = _filter; #if (!SINGLE_NODE) if (mpi_world_size > 1 && SendNodeSize > 0) { MPI_Isend(input + SendNodeOffset * C * H * W, SendNodeSize * C * H * W , MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &stMpiRequest[0]); MPI_Isend(filter, K * C * R * S, MPI_FLOAT, 1, 1, MPI_COMM_WORLD, &stMpiRequest[1]); MPI_Irecv(output + SendNodeOffset * K * OH * OW, SendNodeSize * K * OH * OW, MPI_FLOAT, 1, 2, MPI_COMM_WORLD, &stMpiRequest[2]); #if (TIME_MEASURE) printf("Master send started : %f sec\n", timer_stop(0)); #endif } #endif #if (!SINGLE_NODE) // printf ("SendNodeOffset : %d, mpi_world_size : %d", SendNodeOffset, mpi_world_size); Calculation(0, SendNodeOffset); #else Calculation(0, N); #endif #if (TIME_MEASURE) printf("Master calculation complete : %f sec\n", timer_stop(0)); #endif #if (!SINGLE_NODE) if (mpi_world_size > 1 && SendNodeSize > 0) { MPI_Wait(&stMpiRequest[0], &stMpiStatus); MPI_Wait(&stMpiRequest[1], &stMpiStatus); MPI_Wait(&stMpiRequest[2], &stMpiStatus); #if (TIME_MEASURE) printf("Master recieve complete : %f sec\n", timer_stop(0)); #endif } #endif } #if (!SINGLE_NODE) else if (SendNodeSize) { // printf("Check memory pointer, input : %x Filter :% x output : %x\n", input, filter, output); MPI_Irecv(input, SendNodeSize * C * H * W , MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &stMpiRequest[0]); MPI_Irecv(filter, K * C * R * S, MPI_FLOAT, 0, 1, MPI_COMM_WORLD, &stMpiRequest[1]); MPI_Wait(&stMpiRequest[0], &stMpiStatus); MPI_Wait(&stMpiRequest[1], &stMpiStatus); #if (TIME_MEASURE) printf("Slave receive complete : %f sec\n", timer_stop(0)); #endif Calculation(0, SendNodeSize); // printf("Slave set from output[%d], stride all : [%d]\n", SendNodeOffset, SendNodeOffset * KOHOW); // printf("Slave set end output[%d], stride all : [%d]\n", N, N * KOHOW); #if (TIME_MEASURE) printf("Slave calculation complete : %f sec\n", timer_stop(0)); #endif // printf("Slave send from output[%d]\n", SendNodeOffset * C * OH * OW); MPI_Isend(output, SendNodeSize * K * OH * OW, MPI_FLOAT, 0, 2, MPI_COMM_WORLD, &stMpiRequest[2]); MPI_Wait(&stMpiRequest[2], &stMpiStatus); #if (TIME_MEASURE) printf("Slave send complete : %f sec\n", timer_stop(0)); #endif } #endif } } void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); // printf("MPI rank : %d MPI world size :%d\n", mpi_rank, mpi_world_size); if (mpi_rank != 0) { const int SendNodeSize = N / 2; alloc_tensor((float**)&input, SendNodeSize, _C, _H, _W); alloc_tensor((float**)&output, SendNodeSize, _K, OH, OW); alloc_tensor((float**)&filter, _K, _C, _R, _S); // printf("Set slave memory pointer, input : %x Filter :% x output : %x\n", input, filter, output); } } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { /* if (mpi_rank != 0) { free(input); free(output); free(filter); } */ }