#include "convolution.h" #include "util.h" #include #include #include #include #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; #define MAX_NUM_GPU 4 int num_devices = 0; int num_devices_change = 4; // Array of device (GPU) pointers static float *input_d[MAX_NUM_GPU]; static float *filter_d[MAX_NUM_GPU]; static float *output_d[MAX_NUM_GPU]; static int Nbegin[MAX_NUM_GPU], Nend[MAX_NUM_GPU]; static int nDev = 1; static int kDev = 1; static int ohDev = 1; #define MASTER_TO_SLAVE_TAG 1 //tag for messages sent from master to slaves #define SLAVE_TO_MASTER_TAG 4 //tag for messages sent from slaves to master MPI_Request request; MPI_Status status; static int min_value(int a, int b) { return a < b ? a : b; } static int multi_s = 2; __global__ void sgemm_2(float *input2, float *filter2, float *output2, int N, int C, int H, int W, int K, int R, int S, int pad, int dilation, int stride, int dev, int start_n_gpu, int end_n_gpu) { //int n = blockDim.x * blockIdx.x + threadIdx.x; // raw index //int k = blockDim.y * blockIdx.y + threadIdx.y; // column index //int oh = blockDim.z * blockIdx.z + threadIdx.z; // column index int n = blockIdx.x; int k = blockIdx.y; int oh = blockIdx.z; int ow = threadIdx.x; if(n >= (end_n_gpu-start_n_gpu)) return; if(k > K) return; int OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; int OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if(oh > OH) return; if(ow > OW) return; float o = 0.f; for (int c = 0; c < C; ++c) { for (int r = 0; r < R; ++r) { int h = oh * stride - pad + r * dilation; for (int s = 0; s < S; ++s) { //int h = oh * stride - pad + r * dilation; int w = ow * stride - pad + s * dilation; if (h < 0 || h >= H || w < 0 || w >= W) continue; float i = input2[n * C * H * W + c * H * W + h * W + w]; float f = filter2[k * C * R * S + c * R * S + r * S + s]; o += i * f; //o2 += i2 + f2; } } } output2[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; //printf("Dev(%d)(%d/%d) StartN(%d), EndN(%d), BDx(%d), BDy(%d), Bx(%d), By(%d), Tx(%d), Ty(%d) \n", dev, i, j, start_n_gpu, end_n_gpu , // blockDim.x, blockDim.y, blockIdx.x, blockIdx.y, threadIdx.x, threadIdx.y); } void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { input = _input; output = _output; filter = _filter; int size_n; int start_n; int end_n; int start_n_no0; int end_n_no0; if(mpi_rank == 0){ for(int node=0; node< mpi_world_size; node++){ size_n = N / (mpi_world_size); start_n = (node)*size_n; if(node == 0) start_n_no0 = start_n; if(((node+1) == mpi_world_size) && ((N%(mpi_world_size)) != 0)){ end_n = N; if(node == 0) end_n_no0 = end_n; } else{ end_n = start_n + size_n; if(node == 0) end_n_no0 = end_n; } if(node >= 1){ MPI_Send(&start_n, 1, MPI_INT, node, MASTER_TO_SLAVE_TAG, MPI_COMM_WORLD); //printf("SEND start_n (%d) to (%d)\n", start_n, node); MPI_Send(&end_n, 1, MPI_INT, node, MASTER_TO_SLAVE_TAG + 1, MPI_COMM_WORLD); //printf("SEND end_n (%d) to (%d)\n", end_n, node); int sizeBuf = (end_n - start_n) * C * H * W; //printf("SEND input Buff Len : (%d) to (%d)\n", sizeBuf, node); MPI_Send(&input[start_n*C * H * W], sizeBuf, MPI_FLOAT, node, MASTER_TO_SLAVE_TAG + 2, MPI_COMM_WORLD); //printf("SEND input size (%d) to (%d)\n", sizeBuf, node); } } } else{ alloc_tensor(&input, N, C, H, W); MPI_Recv(&start_n, 1, MPI_INT, 0, MASTER_TO_SLAVE_TAG, MPI_COMM_WORLD, &status); //printf("RECV start_n (%d) at (%d)\n", start_n, mpi_rank); MPI_Recv(&end_n, 1, MPI_INT, 0, MASTER_TO_SLAVE_TAG + 1, MPI_COMM_WORLD, &status); //printf("RECV end_n (%d) at (%d)\n", end_n, mpi_rank); int sizeBuf = (end_n - start_n) * C * H * W; //printf("RECV input Buff Len : %d \n", sizeBuf); MPI_Recv(&input[0], sizeBuf, MPI_FLOAT, 0, MASTER_TO_SLAVE_TAG + 2, MPI_COMM_WORLD, &status); //printf("RECV input size (%d) at (%d)\n", sizeBuf, mpi_rank); } OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if(mpi_rank > 0){ alloc_tensor(&filter, K, C, R, S); } MPI_Bcast(&filter[0], K*C*R*S, MPI_FLOAT, 0, MPI_COMM_WORLD); //printf("Bcast filter (%d) to (%d) \n", K*C*R*S, mpi_rank); if(mpi_rank > 0){ alloc_tensor(&output, N, K, OH, OW); } //MPI_Bcast(&output[0], N*K*OH*OW, MPI_FLOAT, 0, MPI_COMM_WORLD); //printf("Bcast output (%d) to (%d) \n", N*K*OH*OW, mpi_rank); MPI_Barrier(MPI_COMM_WORLD); //timer_start(1); if(mpi_rank == 0){ int size_n_gpu = end_n_no0 - start_n_no0; // N Devide with GPU // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Nbegin[i] = (size_n_gpu / num_devices) * i; Nend[i] = (size_n_gpu / num_devices) * (i + 1); } int mod = (size_n_gpu % num_devices); int small_size = size_n_gpu / num_devices; Nend[num_devices - 1] = small_size * num_devices + mod; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&input_d[i], (Nend[i] - Nbegin[i]) * C * H * W * sizeof(float)) ); CUDA_CALL( cudaMalloc(&filter_d[i], K * C * R * S * sizeof(float)) ); CUDA_CALL( cudaMalloc(&output_d[i], (Nend[i] - Nbegin[i]) * K * OH * OW * sizeof(float)) ); } // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(input_d[i], input + Nbegin[i] * C * H * W , (Nend[i] - Nbegin[i]) * C * H * W * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(filter_d[i], filter, K * C * R * S * sizeof(float), cudaMemcpyHostToDevice) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } /**************Start GPU Cal*************************/ /*printf("Start GPU Cal\n"); for (int i = 0; i < num_devices; i++) { printf("Rank (%d), StartN(%d), EndN(%d)\n", mpi_rank, Nbegin[i], Nend[i]); } */ // Launch kernel on every GPU for (int i = 0; i < num_devices; i++) { //dim3 gridDim((Nend[i] - Nbegin[i])*C*H*W, 1, 1); // grid : raw (Mend[i] - Mbegin[i]) , column (W) //dim3 blockDim(1, 1, 1); // block : 1 x 32 //dim3 gridDim((Nend[i] - Nbegin[i])*C*H*W, 1, 1); // grid : raw (Mend[i] - Mbegin[i]) , column (W) dim3 gridDim((Nend[i] - Nbegin[i]), K, OH); // grid : raw (Mend[i] - Mbegin[i]) , column (W) //dim3 blockDim(nDev, kDev, ohDev); // block : 1 x 32 dim3 blockDim(OW, 1); // 4600 GF /* dim3 blockDim(OW, 1); dim3 gridDim(Mend[i] - Mbegin[i], K, OH); int n = blockIdx.x; int k = blockIdx.y; int oh = blockIdx.z; int ow = threadIdx.x; */ CUDA_CALL( cudaSetDevice(i) ); sgemm_2<<>>(input_d[i], filter_d[i], output_d[i], N, C, H, W, K, R, S, pad, dilation, stride, i, Nbegin[i], Nend[i]); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE /* for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } */ //printf("End GPU Cal\n"); /**************End GPU Cal*************************/ // integrate ouput // Download C matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(output + Nbegin[i] * K * OH * OW , output_d[i], (Nend[i] - Nbegin[i]) * K * OH * OW * sizeof(float), cudaMemcpyDeviceToHost) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } else{ int size_n_gpu = end_n - start_n; // N Devide with GPU // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Nbegin[i] = (size_n_gpu / num_devices) * i; Nend[i] = (size_n_gpu / num_devices) * (i + 1); } int mod = (size_n_gpu % num_devices); int small_size = size_n_gpu / num_devices; Nend[num_devices - 1] = small_size * num_devices + mod; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&input_d[i], (Nend[i] - Nbegin[i]) * C * H * W * sizeof(float)) ); CUDA_CALL( cudaMalloc(&filter_d[i], K * C * R * S * sizeof(float)) ); CUDA_CALL( cudaMalloc(&output_d[i], (Nend[i] - Nbegin[i]) * K * OH * OW * sizeof(float)) ); } // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(input_d[i], input + Nbegin[i] * C * H * W , (Nend[i] - Nbegin[i]) * C * H * W * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(filter_d[i], filter, K * C * R * S * sizeof(float), cudaMemcpyHostToDevice) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } /**************Start GPU Cal*************************/ /* printf("Start GPU Cal\n"); for (int i = 0; i < num_devices; i++) { printf("Rank (%d), StartN(%d), EndN(%d)\n", mpi_rank, Nbegin[i], Nend[i]); } */ // Launch kernel on every GPU for (int i = 0; i < num_devices; i++) { //dim3 gridDim((Nend[i] - Nbegin[i])*C*H*W, 1, 1); // grid : raw (Mend[i] - Mbegin[i]) , column (W) //dim3 blockDim(1, 1, 1); // block : 1 x 32 //dim3 gridDim((Nend[i] - Nbegin[i])*C*H*W, 1, 1); // grid : raw (Mend[i] - Mbegin[i]) , column (W) dim3 gridDim((Nend[i] - Nbegin[i]), K, OH); // grid : raw (Mend[i] - Mbegin[i]) , column (W) //dim3 blockDim(nDev, kDev, ohDev); // block : 1 x 32 dim3 blockDim(OW, 1); CUDA_CALL( cudaSetDevice(i) ); sgemm_2<<>>(input_d[i], filter_d[i], output_d[i], N, C, H, W, K, R, S, pad, dilation, stride, i, Nbegin[i], Nend[i]); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE /* for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } */ //printf("End GPU Cal\n"); /**************End GPU Cal*************************/ // integrate ouput // Download C matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(output + Nbegin[i] * K * OH * OW , output_d[i], (Nend[i] - Nbegin[i]) * K * OH * OW * sizeof(float), cudaMemcpyDeviceToHost) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } if(mpi_rank >= 1){ MPI_Send(&start_n, 1, MPI_INT, 0, SLAVE_TO_MASTER_TAG, MPI_COMM_WORLD); //printf("SEND output start_n (%d) to (%d)\n", start_n, 0); MPI_Send(&end_n, 1, MPI_INT, 0, SLAVE_TO_MASTER_TAG + 1, MPI_COMM_WORLD); //printf("SEND output end_n (%d) to (%d)\n", end_n, 0); int sizeBuf = (end_n - start_n) * K*OH*OW; //printf("SEND output Buff Len : (%d) to (%d)\n", sizeBuf, 0); MPI_Send(&output[0], sizeBuf, MPI_FLOAT, 0, SLAVE_TO_MASTER_TAG + 2, MPI_COMM_WORLD); //printf("SEND output size (%d) to (%d)\n", sizeBuf, 0); } } //double elapsed_time = timer_stop(1); //double flops = (double) 2.0 * N * OH * OW * K * C * R * S / elapsed_time; //printf("Rank (%d), %f sec\n", mpi_rank, elapsed_time); if(mpi_rank == 0){ OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; for (int node = 1; node < mpi_world_size; node++) {// untill all slaves have handed back the processed data //receive low bound from a slave MPI_Recv(&start_n, 1, MPI_INT, node, SLAVE_TO_MASTER_TAG, MPI_COMM_WORLD, &status); //receive upper bound from a slave MPI_Recv(&end_n, 1, MPI_INT, node, SLAVE_TO_MASTER_TAG + 1, MPI_COMM_WORLD, &status); //receive processed data from a slave MPI_Recv(&output[start_n*K*OH*OW], (end_n - start_n) * K*OH*OW, MPI_FLOAT, node, SLAVE_TO_MASTER_TAG + 2, MPI_COMM_WORLD, &status); } } } void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); // cuda call init CUDA_CALL( cudaGetDeviceCount(&num_devices) ); printf("Using %d devices\n", num_devices); printf("Change Device Num (%d)->(%d)\n", num_devices, num_devices_change); num_devices = num_devices_change; for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { }