#include "convolution.h" #include "util.h" #include #include #include #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 static float *input, *output, *filter; static float *in_d[MAX_NUM_GPU], *out_d[MAX_NUM_GPU], *fil_d[MAX_NUM_GPU]; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; //int num_devices = 0; // ORG static int num_devices = 1; // DEBUG static int Nsizei[MAX_NUM_GPU]; // Number of Nsize for each GPU[i] static int Nodesize[2]; // Number of size for each node /* // Array of device (GPU) pointers static float *input[MAX_NUM_GPU]; static float *filter[MAX_NUM_GPU]; static float *output[MAX_NUM_GPU]; static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU]; */ // 4279 GFLOPS (TS = 4) // 4887 GFLOPS (TS = 8) // 3303 GFLOPS (TS = 16) //#define TS 4 #define TS 8 //#define TS 16 __global__ void conv_kernel( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { const int globalRow = blockDim.x * blockIdx.x + threadIdx.x; const int globalCol = blockDim.y * blockIdx.y + threadIdx.y; int OH, OW; OH = (_H + 2 * _pad - _dilation * (_R - 1) - 1) / _stride + 1; OW = (_W + 2 * _pad - _dilation * (_S - 1) - 1) / _stride + 1; int n, k, w; w=globalCol; n=w / (_K * OW); w = w - n * (_K * OW); k = w / OW; w = w - k * OW; int col = w; int row = globalRow; if( (globalRow >= OH) || (globalCol >= _N* _K * OW)) return; int start_row = row * _stride - _pad; int start_col = col * _stride - _pad; float o = 0.f; for (int c = 0; c < _C; ++c) { for (int r = 0; r < _R; ++r) { for (int s = 0; s < _S; ++s) { //int h = oh * stride - pad + r * dilation; //int w = ow * stride - pad + s * dilation; int h = start_row + r * _dilation; int w = start_col + s * _dilation; if (h < 0 || h >= _H || w < 0 || w >= _W) continue; float i = _input[n * _C * _H * _W + c * _H * _W + h * _W + w]; float f = _filter[k * _C * _R * _S + c * _R * _S + r * _S + s]; o += i * f; } // for s } // for r } // for c //_output[n * _K * OH * OW + k * OH * OW + oh * OW + ow] = o; _output[n * _K * OH * OW + k * OH * OW + row * OW + col] = o; } void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { int offset = 0; MPI_Request request; MPI_Status status; input = _input; output = _output; filter = _filter; // printf("DEBUG: mpi_world_size = %d\n", mpi_world_size); /* // for two processors if(mpi_world_size == 2) Nodesize[1] = _N / 2; else Nodesize[1] = 0; Nodesize[0] = _N - Nodesize[1]; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; */ // For two nodes, separate the jobs if(mpi_rank == 0 && mpi_world_size == 2 && Nodesize[1] != 0) { // for the first node MPI_Isend(&input[Nodesize[0]*C*H*W], Nodesize[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); MPI_Isend(filter, _K*_C*_R*_S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); if(Nodesize[mpi_rank] < MAX_NUM_GPU) { // smaller number of size than MAX_NUM_GPU num_devices = Nodesize[mpi_rank]; } } else if(mpi_rank == 1 && Nodesize[mpi_rank] != 0) { // for the second node alloc_tensor(&input, Nodesize[1], C, H, W); alloc_tensor(&output, Nodesize[1], K, OH, OW); alloc_tensor(&filter, _K, _C, _R, _S); MPI_Recv(input, Nodesize[1]*C*H*W, MPI_FLOAT,0,0,MPI_COMM_WORLD, &status); MPI_Recv(filter, _K*_C*_R*_S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); if(Nodesize[mpi_rank] < MAX_NUM_GPU) { num_devices = Nodesize[mpi_rank]; } } offset = 0; for(int i=0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(in_d[i], input + offset, Nsizei[i]*C*H*W*sizeof(float), cudaMemcpyHostToDevice)); CUDA_CALL( cudaMemcpy(fil_d[i], filter, K*C*R*S*sizeof(float), cudaMemcpyHostToDevice)); offset += Nsizei[i] * C * H * W; } for(int i=0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } for(int i=0; i < num_devices; i++) { dim3 gridDim ( (OH+TS-1)/TS, (Nsizei[i]*K*OW + TS -1)/TS, 1); dim3 blockDim(TS, TS, 1); CUDA_CALL(cudaSetDevice(i)); conv_kernel<<>>(in_d[i], out_d[i], fil_d[i], Nsizei[i], _C, _H, _W, _K, _R, _S, _pad, _dilation, _stride); } // DO NOT REMOVE: NEEDED FOR TIME MEASURE for(int i=0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } // gather for the same node offset = 0; for(int i=0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMemcpy(output + offset, out_d[i], Nsizei[i]*K*OH*OW *sizeof(float), cudaMemcpyDeviceToHost) ); offset += Nsizei[i]*K*OH*OW; } for(int i=0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } // gather for the different node if(mpi_rank==0 && mpi_world_size == 2 && Nodesize[1] != 0) { MPI_Recv(&output[Nodesize[0]*K*OH*OW], Nodesize[1]*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status); } else if(mpi_rank==1 && Nodesize[1] != 0) { MPI_Isend(output, Nodesize[1]*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request); } } /* // if (mpi_rank == 0) { //#pragma omp parallel for schedule(dynamic) num_threads(num_threads) //#pragma omp parallel for schedule(dynamic) //#pragma omp parallel for schedule(dynamic) num_threads(80) #pragma omp parallel for schedule(dynamic) num_threads(80) collapse(3) //#pragma omp parallel for schedule(dynamic) num_threads(80) collapse(2) //for (int n = 0; n < N; ++n) { for (int n = 0; n < Nodesize[mpi_rank]; ++n) { for (int k = 0; k < K; ++k) { for (int oh = 0; oh < OH; ++oh) { for (int ow = 0; ow < OW; ++ow) { float o = 0.f; for (int c = 0; c < C; ++c) { for (int r = 0; r < R; ++r) { for (int s = 0; s < S; ++s) { int h = oh * stride - pad + r * dilation; int w = ow * stride - pad + s * dilation; if (h < 0 || h >= H || w < 0 || w >= W) continue; float i = input[n * C * H * W + c * H * W + h * W + w]; float f = filter[k * C * R * S + c * R * S + r * S + s]; o += i * f; } // for s } // for r } // for c output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; } // for ow } // for oh } // for k } // for n // } if(mpi_rank==0 && mpi_world_size == 2) { MPI_Recv(&output[Nodesize[0]*K*OH*OW], Nodesize[1]*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status); } else if(mpi_world_size == 2) { MPI_Isend(output, Nodesize[1]*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request); } } */ void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); // set initial value for the cuda and its kernels OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; // seperate the jobs for two nodes if(mpi_world_size == 2 && _N > 4) Nodesize[1] = _N/2; // two mpi_rank else Nodesize[1] = 0; Nodesize[0] = N - Nodesize[1]; // allocate more jobs for the node0 (mpi_rank=0) // set more Nodesize for mpi_rank=0 if(Nodesize[mpi_rank] < MAX_NUM_GPU) { num_devices = Nodesize[mpi_rank]; for(int i=0; i < Nodesize[mpi_rank]; i++) Nsizei[i] = 1; } else { num_devices = MAX_NUM_GPU; int Nodesize_per_GPU = Nodesize[mpi_rank] / MAX_NUM_GPU; int remainder= Nodesize[mpi_rank] % MAX_NUM_GPU; for(int i=0; i < MAX_NUM_GPU; i++) { Nsizei[i] = Nodesize_per_GPU; if(i < remainder) Nsizei[i]++; // increase the more Nsizei for the last term } } // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&in_d[i], Nsizei[i]*C*H*W* sizeof(float)) ); CUDA_CALL( cudaMalloc(&out_d[i], Nsizei[i]*K*OH*OW * sizeof(float)) ); CUDA_CALL( cudaMalloc(&fil_d[i], K*C*R*S* sizeof(float)) ); } } /* CUDA_CALL( cudaGetDeviceCount(&num_devices) ); printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Mbegin[i] = (M / num_devices) * i; Mend[i] = (M / num_devices) * (i + 1); } Mend[num_devices - 1] = M; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&in_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) ); CUDA_CALL( cudaMalloc(&out_d[i], K * N * sizeof(float)) ); CUDA_CALL( cudaMalloc(&fil_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) ); } } */ void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { }