#include "convolution.h" #include #include #include "util.h" #include static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; int num_threads = 100; void convolution1( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { int size[2]; MPI_Request request; MPI_Status status; input = _input; output = _output; filter = _filter; if (mpi_world_size == 2) size[1] = _N / 2; else size[1] = 0; size[0] = N - size[1]; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if (mpi_rank == 0 && mpi_world_size == 2) { MPI_Isend(&input[size[0]*C*H*W], size[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); MPI_Isend(filter, K*C*R*S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); } else if (mpi_world_size == 2) { alloc_tensor(&input, size[1], C, H, W); alloc_tensor(&output, size[1], K, OH, OW); alloc_tensor(&filter, K, C, R, S); MPI_Recv(input, size[1]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); MPI_Recv(filter, K*C*R*S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); } #pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic) for (int n = 0; n < size[mpi_rank]; ++n) { //#pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic) for (int k = 0; k < K; ++k) { for (int oh = 0; oh < OH; ++oh) { for (int ow = 0; ow < OW; ++ow) { float o = 0.f; for (int c = 0; c < C; ++c) { for (int r = 0; r < R; ++r) { for (int s = 0; s < S; ++s) { int h = oh * stride - pad + r * dilation; int w = ow * stride - pad + s * dilation; if (h < 0 || h >= H || w < 0 || w >= W) continue; float i = input[n * C * H * W + c * H * W + h * W + w]; float f = filter[k * C * R * S + c * R * S + r * S + s]; o += i * f; } } } output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; } } } } if (mpi_rank == 0 && mpi_world_size == 2) { MPI_Recv(&output[size[0]*K*OH*OW], size[1]*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status); } else if(mpi_world_size == 2){ MPI_Isend(output, size[1]*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request); } } void convolution8( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { int size[2]; MPI_Request request; MPI_Status status; input = _input; output = _output; filter = _filter; if (mpi_world_size == 2) size[1] = _N / 2; else size[1] = 0; size[0] = N - size[1]; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if (mpi_rank == 0 && mpi_world_size == 2) { MPI_Isend(&input[size[0]*C*H*W], size[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); MPI_Isend(filter, K*C*R*S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); } else if (mpi_world_size == 2) { alloc_tensor(&input, size[1], C, H, W); alloc_tensor(&output, size[1], K, OH, OW); alloc_tensor(&filter, K, C, R, S); MPI_Recv(input, size[1]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); MPI_Recv(filter, K*C*R*S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); } #pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic) for (int n = 0; n < size[mpi_rank]; ++n) { //#pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic) for (int k = 0; k < K; ++k) { for (int oh = 0; oh < OH; ++oh) { for (int ow = 0; ow < OW; ++ow) { float o = 0.f; for (int c = 0; c < C; ++c) { for (int r = 0; r < R; ++r) { for (int s = 0; s < S; s=s+8) { int h = oh * stride - pad + r * dilation; int w = ow * stride - pad + s * 8 * dilation; int w1 = ow * stride - pad + (s *8 + 1) * dilation; int w2 = ow * stride - pad + (s *8 + 2) * dilation; int w3 = ow * stride - pad + (s *8 + 3) * dilation; int w4 = ow * stride - pad + (s *8 + 4) * dilation; int w5 = ow * stride - pad + (s *8 + 5) * dilation; int w6 = ow * stride - pad + (s *8 + 6) * dilation; int w7 = ow * stride - pad + (s *8 + 7) * dilation; if (h < 0 || h >= H || w < 0 || w >= W) continue; float i = input[n * C * H * W + c * H * W + h * W + w]; float i1 = input[n * C * H * W + c * H * W + h * W + w1]; float i2 = input[n * C * H * W + c * H * W + h * W + w2]; float i3 = input[n * C * H * W + c * H * W + h * W + w3]; float i4 = input[n * C * H * W + c * H * W + h * W + w4]; float i5 = input[n * C * H * W + c * H * W + h * W + w5]; float i6 = input[n * C * H * W + c * H * W + h * W + w6]; float i7 = input[n * C * H * W + c * H * W + h * W + w7]; float f = filter[k * C * R * S + c * R * S + r * S + s*8]; float f1 = filter[k * C * R * S + c * R * S + r * S + s*8+1]; float f2 = filter[k * C * R * S + c * R * S + r * S + s*8+2]; float f3 = filter[k * C * R * S + c * R * S + r * S + s*8+3]; float f4 = filter[k * C * R * S + c * R * S + r * S + s*8+4]; float f5 = filter[k * C * R * S + c * R * S + r * S + s*8+5]; float f6 = filter[k * C * R * S + c * R * S + r * S + s*8+6]; float f7 = filter[k * C * R * S + c * R * S + r * S + s*8+7]; o += i * f; o += i1 * f1; o += i2 * f2; o += i3 * f3; o += i4 * f4; o += i5 * f5; o += i6 * f6; o += i7 * f7; } } } output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; } } } } if (mpi_rank == 0 && mpi_world_size == 2) { MPI_Recv(&output[size[0]*K*OH*OW], size[1]*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status); } else if(mpi_world_size == 2){ MPI_Isend(output, size[1]*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request); } } void convolutionsimd( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { int size[2]; MPI_Request request; MPI_Status status; input = _input; output = _output; filter = _filter; if (mpi_world_size == 2) size[1] = _N / 2; else size[1] = 0; size[0] = N - size[1]; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if (mpi_rank == 0 && mpi_world_size == 2) { MPI_Isend(&input[size[0]*C*H*W], size[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); MPI_Isend(filter, K*C*R*S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); } else if (mpi_world_size == 2) { alloc_tensor(&input, size[1], C, H, W); alloc_tensor(&output, size[1], K, OH, OW); alloc_tensor(&filter, K, C, R, S); MPI_Recv(input, size[1]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); MPI_Recv(filter, K*C*R*S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); } #pragma omp parallel for num_threads(num_threads) collapse(3) for (int n = 0; n < size[mpi_rank]; ++n) { for (int k = 0; k < K; ++k) { for (int oh = 0; oh < OH; ++oh) { //for (int ow = 0; ow < OW; ++ow) { for (int ow = 0; ow < OW/8; ow=ow+8) { //float o = 0.f; __m256 o = _mm256_set_ps(0.,0.,0.,0.,0.,0.,0.,0.); for (int c = 0; c < C; ++c) { for (int r = 0; r < R; ++r) { for (int s = 0; s < S/8; s=s+8) { int h = oh * stride - pad + r * dilation; int w = ow * stride - pad + s * dilation; /*int w = ow * stride - pad + s * 4 * dilation; int w1 = ow * stride - pad + (s *4 + 1) * dilation; int w2 = ow * stride - pad + (s *4 + 2) * dilation; int w3 = ow * stride - pad + (s *4 + 3) * dilation;*/ if (h < 0 || h >= H || w < 0 || w >= W) continue; __m256 i = _mm256_load_ps(&input[n * C * H * W + c * H * W + h * W + w]); /*float i = input[n * C * H * W + c * H * W + h * W + w]; float i1 = input[n * C * H * W + c * H * W + h * W + w1]; float i2 = input[n * C * H * W + c * H * W + h * W + w2]; float i3 = input[n * C * H * W + c * H * W + h * W + w3]; */ __m256 f = _mm256_load_ps(&filter[k * C * R * S + c * R * S + r * S + s]); /*float f = filter[k * C * R * S + c * R * S + r * S + s*4]; float f1 = filter[k * C * R * S + c * R * S + r * S + s*4+1]; float f2 = filter[k * C * R * S + c * R * S + r * S + s*4+2]; float f3 = filter[k * C * R * S + c * R * S + r * S + s*4+3]; */ o += i * f; } } } //output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o[0]; output[n * K * OH * OW + k * OH * OW + oh * OW + ow+1] = o[1]; output[n * K * OH * OW + k * OH * OW + oh * OW + ow+2] = o[2]; output[n * K * OH * OW + k * OH * OW + oh * OW + ow+3] = o[3]; output[n * K * OH * OW + k * OH * OW + oh * OW + ow+4] = o[4]; output[n * K * OH * OW + k * OH * OW + oh * OW + ow+5] = o[5]; output[n * K * OH * OW + k * OH * OW + oh * OW + ow+6] = o[6]; output[n * K * OH * OW + k * OH * OW + oh * OW + ow+7] = o[7]; } } } } if (mpi_rank == 0 && mpi_world_size == 2) { MPI_Recv(&output[size[0]*K*OH*OW], size[1]*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status); } else if(mpi_world_size == 2){ MPI_Isend(output, size[1]*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request); } } void convolution4( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { int size[2]; MPI_Request request; MPI_Status status; input = _input; output = _output; filter = _filter; if (mpi_world_size == 2) size[1] = _N / 2; else size[1] = 0; size[0] = N - size[1]; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if (mpi_rank == 0 && mpi_world_size == 2) { MPI_Isend(&input[size[0]*C*H*W], size[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); MPI_Isend(filter, K*C*R*S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); } else if (mpi_world_size == 2) { alloc_tensor(&input, size[1], C, H, W); alloc_tensor(&output, size[1], K, OH, OW); alloc_tensor(&filter, K, C, R, S); MPI_Recv(input, size[1]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); MPI_Recv(filter, K*C*R*S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); } #pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic) //#pragma omp parallel for num_threads(num_threads) collapse(3) for (int n = 0; n < size[mpi_rank]; ++n) { //#pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic) for (int k = 0; k < K; ++k) { for (int oh = 0; oh < OH; ++oh) { for (int ow = 0; ow < OW; ++ow) { float o = 0.f; for (int c = 0; c < C; ++c) { for (int r = 0; r < R; ++r) { for (int s = 0; s < S/4; ++s) { int h = oh * stride - pad + r * dilation; int w = ow * stride - pad + s * 4 * dilation; int w1 = ow * stride - pad + (s *4 + 1) * dilation; int w2 = ow * stride - pad + (s *4 + 2) * dilation; int w3 = ow * stride - pad + (s *4 + 3) * dilation; if (h < 0 || h >= H || w < 0 || w >= W) continue; float i = input[n * C * H * W + c * H * W + h * W + w]; float i1 = input[n * C * H * W + c * H * W + h * W + w1]; float i2 = input[n * C * H * W + c * H * W + h * W + w2]; float i3 = input[n * C * H * W + c * H * W + h * W + w3]; float f = filter[k * C * R * S + c * R * S + r * S + s*4]; float f1 = filter[k * C * R * S + c * R * S + r * S + s*4+1]; float f2 = filter[k * C * R * S + c * R * S + r * S + s*4+2]; float f3 = filter[k * C * R * S + c * R * S + r * S + s*4+3]; o += i * f; o += i1 * f1; o += i2 * f2; o += i3 * f3; } } } output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; } } } } if (mpi_rank == 0 && mpi_world_size == 2) { MPI_Recv(&output[size[0]*K*OH*OW], size[1]*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status); } else if(mpi_world_size == 2){ MPI_Isend(output, size[1]*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request); } } void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { //if(_S % 8 == 0) // convolution8(_input,_output,_filter,_N,_C,_H,_W,_K,_R,_S,_pad,_dilation,_stride); //convolutionsimd(_input,_output,_filter,_N,_C,_H,_W,_K,_R,_S,_pad,_dilation,_stride); if(_S % 4 == 0) convolution4(_input,_output,_filter,_N,_C,_H,_W,_K,_R,_S,_pad,_dilation,_stride); else convolution1(_input,_output,_filter,_N,_C,_H,_W,_K,_R,_S,_pad,_dilation,_stride); } void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { }