#include #include #include #include "convolution.h" #include "util.h" // tunable parameter #define MAX_GPU_NUMBER 4 #define TS 8 #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } static float *input, *output, *filter; static float *input_d[MAX_GPU_NUMBER], *output_d[MAX_GPU_NUMBER], *filter_d[MAX_GPU_NUMBER]; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; static int num_devices = 1; static int MP_size[2]; static int N_size[MAX_GPU_NUMBER]; __global__ void convolution_cuda( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { const int globalRow = blockDim.x * blockIdx.x + threadIdx.x; const int globalCol = blockDim.y * blockIdx.y + threadIdx.y; //indexing int n, k, w; int col = globalCol; int row = globalRow; int OH = (_H + 2 * _pad - _dilation * (_R - 1) - 1) / _stride + 1; int OW = (_W + 2 * _pad - _dilation * (_S - 1) - 1) / _stride + 1; w = globalCol; n = w / (_K * OW); w = w - n *(_K * OW); k = w / OW; w = w - k * OW; col = w; if (globalRow >= OH || globalCol >= _N *_K * OW) return; int start_row = row * _stride - _pad; int start_col = col * _stride - _pad; float out_buf = 0.0f; for (int c = 0 ; c < _C ; c++) { for (int i = 0 ; i < _R ; i++) { for (int j = 0 ; j < _S ; j++) { int h = start_row + i * _dilation; int w = start_col + j * _dilation; if (h < 0 || w < 0 || h >= _H || w >= _W) continue; float in_buf = _input[n *_C * _W * _H + c * _W * _H + h * _W + w]; float filt_buf = _filter[k *_C * _R * _S + c * _R * _S + i * _S + j]; out_buf += in_buf * filt_buf; } } } _output[n * _K * OH * OW + k * OH * OW + row * OW + col] = out_buf; } void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; input = _input; output = _output; filter = _filter; MPI_Request request; MPI_Status status; if (mpi_rank == 0 && MP_size[1] != 0 && mpi_world_size == 2) { MPI_Isend(&input[MP_size[0] * C * H * W], MP_size[1] * C * H * W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); MPI_Isend(filter, K * C * R * S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); if (MP_size[mpi_rank] < MAX_GPU_NUMBER) { num_devices = MP_size[mpi_rank]; } } else if (mpi_rank == 1 && MP_size[mpi_rank] != 0) { alloc_tensor(&input, MP_size[1], C, H, W); alloc_tensor(&output, MP_size[1], K, OH, OW); alloc_tensor(&filter, K, C, R, S); MPI_Recv(input, MP_size[1]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); MPI_Recv(filter, K * C * R * S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); if (MP_size[mpi_rank] < MAX_GPU_NUMBER) { num_devices = MP_size[mpi_rank]; } } int offset = 0; for (int i = 0 ; i < num_devices ; i++) { CUDA_CALL(cudaMemcpy(input_d[i], input + offset, N_size[i] * C * H * W * sizeof(float), cudaMemcpyHostToDevice)); CUDA_CALL(cudaMemcpy(filter_d[i], filter, K * C * R * S * sizeof(float),cudaMemcpyHostToDevice)); offset += N_size[i] * C * H * W; } for (int i = 0; i < num_devices; i++) { CUDA_CALL(cudaDeviceSynchronize()); } for (int i = 0; i < num_devices; i++) { dim3 gridDim((OH + TS - 1)/TS, (N_size[i] * K * OW + TS - 1)/ TS, 1); dim3 blockDim(TS, TS, 1); CUDA_CALL(cudaSetDevice(i)); convolution_cuda<<>>(input_d[i], output_d[i], filter_d[i], N_size[i], C, H, W, K, R, S, pad, dilation, stride); } for (int i = 0; i < num_devices; i++) { CUDA_CALL(cudaSetDevice(i)); CUDA_CALL(cudaDeviceSynchronize()); } offset = 0; for (int i = 0; i < num_devices; i++) { CUDA_CALL(cudaSetDevice(i)); CUDA_CALL(cudaMemcpy(output + offset, output_d[i], N_size[i] * K * OH * OW * sizeof(float), cudaMemcpyDeviceToHost)); offset += N_size[i] * K * OH * OW; } for (int i = 0; i < num_devices; i++) { CUDA_CALL(cudaDeviceSynchronize()); CUDA_CALL(cudaSetDevice(i)); } if (mpi_rank == 0 && MP_size[1] != 0 && mpi_world_size == 2) { MPI_Recv(&output[MP_size[0] * K * OH * OW], MP_size[1] * K * OH * OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status); } else if(mpi_rank == 1 && MP_size[1] != 0){ MPI_Isend(output, MP_size[1] * K * OH * OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request); } } void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if (mpi_world_size == 2) MP_size[1] = _N / 2; MP_size[0] = N - MP_size[1]; if (MP_size[mpi_rank] < MAX_GPU_NUMBER) { num_devices = MP_size[mpi_rank]; for (int i = 0 ; i < MP_size[mpi_rank] ; i++) { N_size[i] = 1; } } else { num_devices = MAX_GPU_NUMBER; int remainder = MP_size[mpi_rank] % MAX_GPU_NUMBER; int quotient = MP_size[mpi_rank] / MAX_GPU_NUMBER; for (int i = 0 ; i < MAX_GPU_NUMBER ; i++) { N_size[i] = quotient; if (i < remainder) N_size[i]++; } } for (int i = 0 ; i < num_devices ; i++) { CUDA_CALL(cudaSetDevice(i)); CUDA_CALL(cudaMalloc(&input_d[i], N_size[i] * C * H * W * sizeof(float))); CUDA_CALL(cudaMalloc(&output_d[i], N_size[i] * K * OH * OW * sizeof(float))); CUDA_CALL(cudaMalloc(&filter_d[i], K * C * R * S * sizeof(float))); } } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { }