#include "convolution.h" #include "util.h" #include #include #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU (4) #define BLOCK_SIZE (1024) int num_devices = 0; static int Nbegin[MAX_NUM_GPU], Nend[MAX_NUM_GPU], Nsize[MAX_NUM_GPU], Nslice; // Array of device (GPU) pointers static float *i_d[MAX_NUM_GPU]; static float *f_d[MAX_NUM_GPU]; static float *o_d[MAX_NUM_GPU]; static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; int sn, en, firstSize, modN; __global__ void convOpt( float *input, float *output, float *filter, int N, int C, int H, int W, int K, int R, int S, int pad, int dilation, int stride) { int OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; int OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; int now = blockDim.x * blockIdx.x + threadIdx.x; int k = blockIdx.y; int oh = blockIdx.z; int n = now / OW; int ow = now % OW; if (oh >= OH || ow >= OW || k >= K || n >= N) return; //for (int n = 0; n < N; ++n) { //for (int k = 0; k < K; ++k) { float o = 0.0f; for (int c = 0; c < C; ++c) { for (int r = 0; r < R; ++r) { for (int s = 0; s < S; ++s) { int h = oh * stride - pad + r * dilation; int w = ow * stride - pad + s * dilation; if (h < 0 || h >= H || w < 0 || w >= W) continue; float i = input[n*C*H*W + c*H*W + h*W + w]; float f = filter[k*C*R*S + c*R*S + r*S + s]; o += i * f; } } } output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; } } } void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { input = _input; output = _output; filter = _filter; MPI_Request request[2]; MPI_Status status[2]; if (N > 1) { if (mpi_rank == 0) { int snTmp = firstSize; int enTmp = N; MPI_Isend(input+snTmp*C*H*W, (enTmp-snTmp)*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request[0]); MPI_Isend(filter, K*C*R*S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request[1]); } else { if (modN > 0) { alloc_tensor(&input, modN, C, H, W); alloc_tensor(&output, modN, K, OH, OW); alloc_tensor(&filter, K, C, R, S); } MPI_Irecv(input, modN*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request[0]); MPI_Irecv(filter, K*C*R*S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request[1]); } MPI_Waitall(2,request, status); } if (modN > 0) { // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&i_d[i], Nsize[i]*C*H*W * sizeof(float)) ); CUDA_CALL( cudaMalloc(&f_d[i], K*C*R*S * sizeof(float)) ); CUDA_CALL( cudaMalloc(&o_d[i], Nsize[i]*K*OH*OW * sizeof(float)) ); } // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMemcpy(i_d[i], input + Nbegin[i]*C*H*W, Nsize[i]*C*H*W * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(f_d[i], filter, K*C*R*S * sizeof(float), cudaMemcpyHostToDevice) ); } // Launch kernel on every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); dim3 blockDim(BLOCK_SIZE, 1, 1); dim3 gridDim((Nsize[i]*OW+BLOCK_SIZE-1)/BLOCK_SIZE, K, OH); convOpt<<>>(i_d[i], o_d[i], f_d[i], Nsize[i], C, H, W, K, R, S, pad, dilation, stride); } // Download output matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMemcpy(output + Nbegin[i]*K*OH*OW, o_d[i], Nsize[i]*K*OH*OW * sizeof(float), cudaMemcpyDeviceToHost) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } } if (N > 1) { if (mpi_rank == 0) { int snTmp = firstSize; int enTmp = N; MPI_Irecv(output+snTmp*K*OH*OW, (enTmp-snTmp)*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request[0]); } else { MPI_Isend(output, modN*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request[0]); } MPI_Wait(&request[0], &status[0]); } } void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); firstSize = (N + 1) / mpi_world_size; if (mpi_rank == 0) { sn = 0; en = firstSize; modN = firstSize; } else { sn = firstSize; en = N; modN = N - firstSize; } CUDA_CALL( cudaGetDeviceCount(&num_devices) ); //printf("Using %d devices\n", num_devices); Nslice = (modN + num_devices - 1) / num_devices; for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here //printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { //printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Nbegin[i] = Nslice * i; if (Nbegin[i] + Nslice < modN) Nend[i] = Nbegin[i] + Nslice; else if (Nbegin[i] < modN) Nend[i] = modN; else Nbegin[i]=0, Nend[i] = 0; Nsize[i] = Nend[i] - Nbegin[i]; } } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { if (N > 1 && mpi_rank != 0) { free(input); free(output); free(filter); } }