#include "convolution.h" #include #include #include #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 #define MAX_NUM_NODE 4 #define THREADS_PER_BLOCK 16 #define THREADS_DIM 4 #define WPT 8 #define RTS 2 int num_devices = 0; __global__ void sgemm(float *input, float *output, float *filter, int N, int C, int H, int W, int K, int R, int S, int OH, int OW, int pad, int dilation, int stride) { int row = threadIdx.x; int col = threadIdx.y; int dim = threadIdx.z; int oh = blockDim.x * blockIdx.x + threadIdx.x; int ow = blockDim.y * blockIdx.y + threadIdx.y; int k = blockDim.z * blockIdx.z + threadIdx.z; __shared__ float fsub[THREADS_DIM][THREADS_PER_BLOCK][THREADS_PER_BLOCK]; int r_q = R / THREADS_PER_BLOCK; int r_r = R % THREADS_PER_BLOCK; if (r_r != 0) r_q += 1; int s_q = S / THREADS_PER_BLOCK; int s_r = S % THREADS_PER_BLOCK; if (s_r != 0) s_q += 1; for (int n = 0; n < N; n++) { float temp = 0.0f; for (int c = 0; c < C; c++) { for (int rr = 0; rr < r_q; rr++) { int f_row = THREADS_PER_BLOCK * rr + row; for (int ss = 0; ss < s_q; ss++) { int f_col = THREADS_PER_BLOCK * ss + col; if (f_row >= R || f_col >= S || k >= K) fsub[dim][row][col] = 0; else fsub[dim][row][col] = filter[k * C * R * S + c * R * S + f_row * S + f_col]; __syncthreads(); for (int r = 0; r < THREADS_PER_BLOCK; r++) { int h = oh * stride - pad + (THREADS_PER_BLOCK * rr + r) * dilation; for (int s = 0; s < THREADS_PER_BLOCK; s++) { int w = ow * stride - pad + (THREADS_PER_BLOCK * ss + s) * dilation; if (oh >= OH || ow >= OW || h < 0 || h >= H || w < 0 || w >= W) continue; float i = input[n * C * H * W + c * H * W + h * W + w]; float f = fsub[dim][r][s]; temp += i * f; } } //printf("temp : %f\n", temp); __syncthreads(); } } } if (oh < OH && ow < OW && k < K) output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = temp; } } // Array of device (GPU) pointers static float *a_d[MAX_NUM_GPU]; static float *b_d[MAX_NUM_GPU]; static float *c_d[MAX_NUM_GPU]; static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU]; static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; int is[MAX_NUM_NODE], ie[MAX_NUM_NODE]; int count; extern void alloc_tensor(float **t, int D0, int D1, int D2, int D3); void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { input = _input; output = _output; filter = _filter; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; MPI_Status status; for (int i = 0; i < mpi_world_size; i++) { is[i] = N / mpi_world_size * i; ie[i] = N / mpi_world_size * (i + 1); } ie[mpi_world_size - 1] = N; count = ie[mpi_rank] - is[mpi_rank]; if (mpi_rank == 0) { for (int i = 1; i < mpi_world_size; i++) { MPI_Send(&input[is[i] * C * H * W], (ie[i] - is[i]) * C * H * W, MPI_FLOAT, i, 0, MPI_COMM_WORLD); } } else { alloc_tensor(&input, count, C, H, W); alloc_tensor(&output, count, K, OH, OW); alloc_tensor(&filter, K, C, R, S); MPI_Recv(input, count * C * H * W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); } MPI_Bcast(filter, K * C * R * S, MPI_FLOAT, 0, MPI_COMM_WORLD); // CUDA init CUDA_CALL( cudaGetDeviceCount(&num_devices) ); printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("NODE %d [GPU %d] %s\n", mpi_rank, i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Mbegin[i] = (count / num_devices) * i; Mend[i] = (count / num_devices) * (i + 1); } Mend[num_devices - 1] = count; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * C * H * W * sizeof(float)) ); CUDA_CALL( cudaMalloc(&b_d[i], K * C * R * S * sizeof(float)) ); CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * K * OH * OW * sizeof(float)) ); } // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(a_d[i], input + Mbegin[i] * C * H * W, (Mend[i] - Mbegin[i]) * C * H * W * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(b_d[i], filter, K * C * R * S * sizeof(float), cudaMemcpyHostToDevice) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } // Launch kernel on every GPU for (int i = 0; i < num_devices; i++) { dim3 blockDim(THREADS_PER_BLOCK, THREADS_PER_BLOCK, THREADS_DIM); dim3 gridDim(((OH + THREADS_PER_BLOCK -1) / THREADS_PER_BLOCK), ((OW + THREADS_PER_BLOCK -1) / THREADS_PER_BLOCK), (K + THREADS_DIM -1) / THREADS_DIM); CUDA_CALL( cudaSetDevice(i) ); sgemm<<>>(a_d[i], c_d[i], b_d[i], (Mend[i] - Mbegin[i]), C, H, W, K, R, S, OH, OW, pad, dilation, stride); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { // Do any post-matmul cleanup work here. MPI_Status status; // Download C matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(output + Mbegin[i] * K * OH * OW, c_d[i], (Mend[i] - Mbegin[i]) * K * OH * OW * sizeof(float), cudaMemcpyDeviceToHost) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } if (mpi_rank == 0) { for (int i = 1; i < mpi_world_size; i++) { MPI_Recv(&output[is[i] * K * OH * OW], (ie[i] - is[i]) * K * OH * OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status); } } else { MPI_Send(output, count * K * OH * OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD); } }