#include #include #include #include "convolution.h" #include "util.h" #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 #define TS 8 // Array of device (GPU) pointers static float *input, *output, *filter; static float *in_d[MAX_NUM_GPU], *out_d[MAX_NUM_GPU], *fil_d[MAX_NUM_GPU]; static int N, C, H, W; static int K, R, S; static int pad, dilation, stride; static int mpi_rank, mpi_world_size; static int num_devices =1; static int Chunk_size[2]; static int NN[MAX_NUM_GPU]; static int OH, OW; __global__ void conv( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride){ const int globalRow = blockDim.x * blockIdx.x + threadIdx.x; const int globalCol = blockDim.y * blockIdx.y + threadIdx.y; int OH, OW; OH = (_H + 2*_pad - _dilation*(_R-1)-1)/_stride+1; OW = (_W + 2*_pad - _dilation*(_S-1)-1)/_stride+1; int n, k, w; w = globalCol; n = w/(_K*OW); w = w - n*(_K*OW); k = w/OW; w = w - k*OW; int col = w; int row = globalRow; if(globalRow >= OH || globalCol >= _N*_K*OW) return; int start_row = row*_stride - _pad; int start_col = col*_stride - _pad; float o = 0.0f; for(int c=0; c<_C; c++){ for(int i=0; i<_R; i++){ for(int j=0; j<_S; j++){ int h = start_row + i*_dilation; int w = start_col + j*_dilation; if(h<0 || w<0 || h>= _H || w>= _W) continue; float in = _input[n*_C*_W*_H + c*_W*_H + h*_W + w]; float fil = _filter[k*_C*_R*_S + c*_R*_S + i*_S + j]; o+= in*fil; } } } _output[n*_K*OH*OW + k*OH*OW + row*OW + col] = o; } void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride){ int offset = 0; MPI_Request request; MPI_Status status; input = _input; output = _output; filter = _filter; if(mpi_rank == 0 && mpi_world_size ==2 && Chunk_size[1] != 0){ MPI_Isend(&input[Chunk_size[0]*C*H*W], Chunk_size[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); MPI_Isend(filter, _K*_C*_R*_S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); if(Chunk_size[mpi_rank] < MAX_NUM_GPU){ num_devices = Chunk_size[mpi_rank]; } } else if(mpi_rank ==1 && Chunk_size[mpi_rank] != 0){ alloc_tensor(&input, Chunk_size[1], C, H, W); alloc_tensor(&output, Chunk_size[1], K, OH, OW); alloc_tensor(&filter, _K, _C, _R, _S); MPI_Recv(input, Chunk_size[1]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); MPI_Recv(filter, _K*_C*_R*_S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); if(Chunk_size[mpi_rank] < MAX_NUM_GPU){ num_devices = Chunk_size[mpi_rank]; } } offset = 0; for(int i=0; i>>(in_d[i], out_d[i], fil_d[i], NN[i], _C, _H, _W, _K, _R, _S, _pad, _dilation, _stride); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } offset = 0; for(int i=0; i4) Chunk_size[1] = _N/2; else Chunk_size[1]=0; Chunk_size[0] = N- Chunk_size[1]; if(Chunk_size[mpi_rank] < MAX_NUM_GPU){ num_devices = Chunk_size[mpi_rank]; for(int i=0; i