#include "convolution.h" #include "util.h" #include #include #define min(a, b) (((a) < (b)) ? (a) : (b)) #define max(a, b) (((a) > (b)) ? (a) : (b)) #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define TS 8 #define MAX_NUM_GPU 4 #define MAX_NUM_MPI 2 int num_devices = 1; static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; int ns[2], ne[2]; static int Nbegin[MAX_NUM_MPI][MAX_NUM_GPU], Nend[MAX_NUM_MPI][MAX_NUM_GPU]; static float *input_d[MAX_NUM_GPU]; static float *filter_d[MAX_NUM_GPU]; static float *output_d[MAX_NUM_GPU]; MPI_Status status; MPI_Request request; __global__ void sgemm(float *_input, float *_filter, float *_output, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { const int globalRow = blockDim.x * blockIdx.x + threadIdx.x; const int globalCol = blockDim.y * blockIdx.y + threadIdx.y; int _OH = (_H + 2 * _pad - _dilation * (_R - 1) - 1) / _stride + 1; int _OW = (_W + 2 * _pad - _dilation * (_S - 1) - 1) / _stride + 1; if (globalRow >= _OH || globalCol >= _N * _K * _OW) return; int n = globalCol / (_K * _OW); int cw = globalCol - n * (_K * _OW); int k = cw / _OW; cw -= k * _OW; float o = 0.f; int row = globalRow * _stride - _pad; int col = cw * _stride - _pad; for (int c = 0; c < _C; ++c) { for (int r = 0; r < _R; ++r) { int h = row + r * _dilation; if (h < 0 || h >= _H) continue; for (int s = 0; s < _S; ++s) { int w = col + s * _dilation; if (w < 0 || w >= _W) continue; float i = _input[n * _C * _H * _W + c * _H * _W + h * _W + w]; float f = _filter[k * _C * _R * _S + c * _R * _S + r * _S + s]; o += i * f; } //s } //r } //c _output[n * _K * _OH * _OW + k * _OH * _OW + globalRow * _OW + cw] = o; // Synchronise before loading the next tile __syncthreads(); } void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { input = _input; output = _output; filter = _filter; if (mpi_rank == 0) { for (int i = 1; i < mpi_world_size; i++) { MPI_Isend(&input[ns[i]*C*H*W], (ne[i]-ns[i])*C*H*W, MPI_FLOAT, i, 1, MPI_COMM_WORLD, &request); MPI_Isend(filter, K*C*R*S, MPI_FLOAT, i, 2, MPI_COMM_WORLD, &request); } } else { alloc_tensor(&input, N, C, H, W); alloc_tensor(&filter, K, C, R, S); alloc_tensor(&output, N, K, OH, OW); MPI_Recv(&input[ns[mpi_rank]*C*H*W], (ne[mpi_rank]-ns[mpi_rank])*C*H*W, MPI_FLOAT, 0, 1, MPI_COMM_WORLD, &status); MPI_Recv(filter, K*C*R*S, MPI_FLOAT, 0, 2, MPI_COMM_WORLD, &status); } // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(input_d[i], input + Nbegin[mpi_rank][i] *C*H*W, (Nend[mpi_rank][i] - Nbegin[mpi_rank][i]) *C*H*W * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(filter_d[i], filter, K*C*R*S * sizeof(float), cudaMemcpyHostToDevice) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } ///////////////// Start Calculation /////////////////// // Launch kernel on every GPU for (int i = 0; i < num_devices; i++) { dim3 gridDim((OH+TS-1)/TS,((Nend[mpi_rank][i] - Nbegin[mpi_rank][i])*K*OW+TS-1)/TS, 1); dim3 blockDim(TS, TS, 1); CUDA_CALL( cudaSetDevice(i) ); sgemm<<>>(input_d[i], filter_d[i], output_d[i], Nend[mpi_rank][i] - Nbegin[mpi_rank][i], _C, _H, _W, _K, _R, _S, _pad, _dilation, _stride); } // NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); /////////////////////// Init Cuda /////////////////////// CUDA_CALL( cudaGetDeviceCount(&num_devices) ); if(num_devices > MAX_NUM_GPU) num_devices = MAX_NUM_GPU; printf("[MPI:%d] Using %d devices\n", mpi_rank, num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } for (int i = 0; i < mpi_world_size; i++) { ns[i] = N / mpi_world_size * i; ne[i] = N / mpi_world_size * (i + 1); } ne[mpi_world_size - 1] = N; // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Nbegin[mpi_rank][i] = (ne[mpi_rank]-ns[mpi_rank]) / num_devices * i + ns[mpi_rank]; Nend[mpi_rank][i] = (ne[mpi_rank]-ns[mpi_rank]) / num_devices * (i + 1) + ns[mpi_rank]; } Nend[mpi_rank][num_devices - 1] = ne[mpi_rank]; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&input_d[i], (Nend[mpi_rank][i] - Nbegin[mpi_rank][i]) * C * H * W * sizeof(float)) ); CUDA_CALL( cudaMalloc(&filter_d[i], K * C * R * S * sizeof(float)) ); CUDA_CALL( cudaMalloc(&output_d[i], (Nend[mpi_rank][i] - Nbegin[mpi_rank][i]) * K * OH * OW * sizeof(float)) ); } } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { // Download output matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(output + Nbegin[mpi_rank][i] * K * OH * OW, output_d[i], (Nend[mpi_rank][i] - Nbegin[mpi_rank][i]) * K * OH * OW * sizeof(float), cudaMemcpyDeviceToHost) ); } if (mpi_rank == 0) { for (int i = 1; i < mpi_world_size; i++) { MPI_Recv(&output[ns[i]*K*OH*OW], (ne[i]-ns[i])*K*OH*OW, MPI_FLOAT, 1, 1, MPI_COMM_WORLD, &status); } } else { MPI_Isend(&output[ns[mpi_rank]*K*OH*OW], (ne[mpi_rank]-ns[mpi_rank])*K*OH*OW, MPI_FLOAT, 0, 1, MPI_COMM_WORLD, &request); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } }