#include "convolution.h" #include #include #include "util.h" #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define NODE 2 #define MAX_NUM_GPU 4 void convolution_cuda(); void convolution_cuda_init(int,int); void convolution_cuda_final(int); static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; int num_devices = 0; __global__ void conv_kernel(float *input, float *filter, float *output, int N, int C, int H, int W, int K, int R, int S, int OH, int OW, int pad, int dilation, int stride) { int m = blockDim.x * blockIdx.x + threadIdx.x; int j = blockDim.y * blockIdx.y + threadIdx.y; int k = blockDim.z * blockIdx.z + threadIdx.z; //int m = threadIdx.x; //int j = threadIdx.y; //int k = threadIdx.z; //printf("kernel test %d %d %d\n", blockDim.x, blockIdx.x, threadIdx.x); if (m >= K || j>= OH || k >= OW) return; for(int n=0;n= H || w < 0 || w >= W) continue; float i = input[n * C * H * W + c * H * W + h * W + w]; float f = filter[m * C * R * S + c * R * S + r * S + s]; o += i * f; } } } output[n * K * OH * OW + m * OH * OW + j * OW + k] = o; //printf("kernel test = %f ",o); //} //printf("\n"); //} //} } } void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { input = _input; output = _output; filter = _filter; MPI_Status status; MPI_Request request1,request2; int rows; int half = N/mpi_world_size; if(mpi_world_size == 2){ rows = N-half; }else{ rows = N; } int offset = N/mpi_world_size; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if (mpi_rank == 0) { if(mpi_world_size != 1){ MPI_Isend(&input[(offset)*C*H*W], (rows)*C*H*W, MPI_FLOAT, 1 , 1, MPI_COMM_WORLD,&request1); MPI_Isend(filter, K*C*R*S, MPI_FLOAT, 1, 1, MPI_COMM_WORLD,&request2); } //printf("\n test %d %d\n",rows,offset); convolution_cuda_init(rows,0); convolution_cuda(); convolution_cuda_final(0); if(mpi_world_size != 1){ MPI_Recv(&output[(offset)*K*OH*OW], (rows)*K*OH*OW, MPI_FLOAT, 1, 2, MPI_COMM_WORLD, &status); } }else if(mpi_rank > 0){ alloc_tensor(&input, rows, C,H,W); alloc_tensor(&filter, K,C,R,S); alloc_tensor(&output, rows, K,OH,OW); //printf("\n test11 %d %d %f\n",i,offset,*(input + (Mbegin[i]+offset) * C * H * W)); MPI_Recv(input, (rows)*C*H*W, MPI_FLOAT, 0, 1, MPI_COMM_WORLD, &status); MPI_Recv(filter, K*C*R*S, MPI_FLOAT, 0, 1, MPI_COMM_WORLD, &status); //printf("\n test %d %d\n",rows,offset); convolution_cuda_init(rows,0); convolution_cuda(); convolution_cuda_final(0); MPI_Send(output, (rows)*K*OH*OW, MPI_FLOAT, 0, 2, MPI_COMM_WORLD); } } // Array of device (GPU) pointers static float *input_d[MAX_NUM_GPU]; static float *filter_d[MAX_NUM_GPU]; static float *output_d[MAX_NUM_GPU]; static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU]; void convolution_cuda() { // Launch kernel on every GPU for (int i = 0; i < num_devices; i++) { dim3 blockDim(4, 4, 64); dim3 gridDim((K+3)/4, (OH+3)/4, (OW+63)/64); CUDA_CALL( cudaSetDevice(i) ); conv_kernel<<>>(input_d[i], filter_d[i], output_d[i], Mend[i] - Mbegin[i], C, H ,W , K, R, S, OH, OW, pad, dilation, stride ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void convolution_cuda_init(int rows,int offset) { //printf("\n test %d %d\n",rows,offset); CUDA_CALL( cudaGetDeviceCount(&num_devices) ); printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Mbegin[i] = (rows / num_devices) * i; Mend[i] = (rows / num_devices) * (i + 1); //printf("\n test %d %d\n",Mbegin[i],Mend[i]); } Mend[num_devices - 1] = rows; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&input_d[i], (Mend[i] - Mbegin[i]) * C * H * W * sizeof(float)) ); CUDA_CALL( cudaMalloc(&filter_d[i], K * C * R * S * sizeof(float)) ); CUDA_CALL( cudaMalloc(&output_d[i], (Mend[i] - Mbegin[i]) * K* OH * OW * sizeof(float)) ); } // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(input_d[i], input + (Mbegin[i]+offset) * C * H * W, (Mend[i] - Mbegin[i]) * C * H * W * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(filter_d[i], filter, K * C * R * S * sizeof(float), cudaMemcpyHostToDevice) ); //printf("\n test %d %d %f\n",i,offset,*(input + (Mbegin[i]+offset) * C * H * W)); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void convolution_cuda_final(int offset) { // Do any post-matmul cleanup work here. // Download C matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(output + (Mbegin[i]+offset) * K * OH * OW, output_d[i], (Mend[i] - Mbegin[i]) * K * OH * OW * sizeof(float), cudaMemcpyDeviceToHost) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { }