#include "convolution.h" #include #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 int num_devices = 0; __global__ void conv_kernel(float *input, float *filter, float *output, int N, int C, int H, int W, int K, int R, int S, int pad, int dilation, int stride) { int n = blockIdx.x; int k = blockIdx.y;; int oh = blockIdx.z; int ow = threadIdx.x; int OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; int OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; float o = 0.f; for (int c = 0; c < C; ++c) { for (int r = 0; r < R; ++r) { for (int s = 0; s < S; ++s) { int h = oh * stride - pad + r * dilation; int w = ow * stride - pad + s * dilation; if (h < 0 || h >= H || w < 0 || w >= W) continue; float i = input[n * C * H * W + c * H * W + h * W + w]; float f = filter[k * C * R * S + c * R * S + r * S + s]; o += i * f; } } } output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; } // Array of device (GPU) pointers static float *a_d[MAX_NUM_GPU]; static float *b_d[MAX_NUM_GPU]; static float *c_d[MAX_NUM_GPU]; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU]; void cuda_conv() { // Launch kernel on every GPU for (int i = 0; i < num_devices; i++) { dim3 blockDim(OW, 1, 1); dim3 gridDim(Mend[i] - Mbegin[i], K, OH); CUDA_CALL( cudaSetDevice(i) ); conv_kernel<<>>(a_d[i], b_d[i], c_d[i], Mend[i]-Mbegin[i], C, H, W, K, R, S, pad, dilation, stride); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void cuda_mem_init(int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; CUDA_CALL( cudaGetDeviceCount(&num_devices) ); //printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here //printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Mbegin[i] = (N / num_devices) * i; Mend[i] = (N / num_devices) * (i + 1); } Mend[num_devices - 1] = N; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * C * H * W * sizeof(float)) ); CUDA_CALL( cudaMalloc(&b_d[i], K * C * R * S * sizeof(float)) ); CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * K * OH * OW * sizeof(float)) ); } } void cuda_conv_init(float *input, float *filter, float *output) { // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(a_d[i], input + Mbegin[i] * C * H * W, (Mend[i] - Mbegin[i]) * C * H * W * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(b_d[i], filter, K * C * R * S * sizeof(float), cudaMemcpyHostToDevice) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void cuda_conv_final(float *output) { // Do any post-matmul cleanup work here. // Download C matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(output + Mbegin[i] * K * OH * OW, c_d[i], (Mend[i] - Mbegin[i]) * K * OH * OW * sizeof(float), cudaMemcpyDeviceToHost) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } }