#include "convolution.h" #include #include #include "util.h" #define MAX_NUM_GPU 4 #define TS 8 int num_devices = 0; int num_threads = 40; static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int outH, outW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; //static float *input, *output, *filter; static float *input_d[MAX_NUM_GPU]; static float *output_d[MAX_NUM_GPU]; static float *filter_d[MAX_NUM_GPU]; static int Nbegin[MAX_NUM_GPU], Nend[MAX_NUM_GPU]; #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } __global__ void cuda_conv( float *_input,float *_output, float *_filter, int _N,int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride){ const int globalRow = blockDim.x * blockIdx.x + threadIdx.x; const int globalCol = blockDim.y * blockIdx.y + threadIdx.y; int OH, OW; OH = (_H + 2 *_pad - _dilation * (_R - 1) -1) / _stride + 1; OW = (_W + 2 *_pad - _dilation * (_S - 1) -1) / _stride + 1; int n, k , w; w= globalCol; n = w/ (_K * OW); w= w- n *(_K * OW); k= w/ OW; w= w-k*OW; int col = w; int row = globalRow; if(globalRow>=OH || globalCol >= _N*_K*OW) return; int start_row = row * _stride - _pad; int start_col = col * _stride - _pad; float o =0.0f; for (int c = 0; c<_C;c++){ for(int i=0; i<_R;i++){ for(int j=0;j<_S;j++){ int h = start_row + i *_dilation; int w = start_col + j *_dilation; if(h<0|| w<0 || h>=_H || w>=_W) continue; float in = _input[n*_C*_W*_H + c*_W*_H + h*_W+w]; float fil = _filter[k*_C*_R*_S + c*_R*_S + i*_S+j]; o += in * fil; } } } _output[n*_K*OH*OW + k*OH*OW + row*OW+col]=o; } void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { int size[2]; MPI_Request request; MPI_Status status; int OH, OW; output=_output; OH = (_H + 2 *_pad - _dilation * (_R - 1) -1) / _stride + 1; OW = (_W + 2 *_pad - _dilation * (_S - 1) -1) / _stride + 1; input = _input; output = _output; filter = _filter; if (mpi_world_size == 2) size[1] = _N / 2; else size[1] = 0; size[0] = N - size[1]; outH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; outW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if (mpi_rank == 0 && mpi_world_size == 2) { MPI_Isend(&input[size[1]*C*H*W], size[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); MPI_Isend(filter, K*C*R*S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); } else if (mpi_world_size == 2) { alloc_tensor(&input, size[1], C, H, W); alloc_tensor(&output, size[1], K, outH, outW); alloc_tensor(&filter, K, C, R, S); MPI_Recv(input, size[1]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); MPI_Recv(filter, K*C*R*S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); } for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) );//jjlee printf("%s %d num_devices %d n (begin %d end %d)%d \n",__func__,__LINE__,num_devices,Nbegin[i],Nend[i],Nend[i] - Nbegin[i]); CUDA_CALL( cudaMemcpy(input_d[i], input + Nbegin[i] * _C*_H*_W, (Nend[i] - Nbegin[i]) * _C*_H*_W * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(filter_d[i], filter, _K * _C*_R*_S * sizeof(float), cudaMemcpyHostToDevice) ); } printf("%s %d \n",__func__,__LINE__); for (int i = 0; i < num_devices; i++) { dim3 gridDim((OH+TS-1)/TS, ( (Nend[i] - Nbegin[i]) *K*OW + TS - 1)/TS, 1); dim3 blockDim(TS, TS, 1); CUDA_CALL( cudaSetDevice(i) ); cuda_conv<<>>(input_d[i], output_d[i], filter_d[i], (Nend[i] - Nbegin[i]) , _C, _H, _W, _K, _R, _S, _pad, _dilation, _stride); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) );//jjlee CUDA_CALL( cudaDeviceSynchronize() ); } } #if 0 void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { int size[2]; MPI_Request request; MPI_Status status; input = _input; output = _output; filter = _filter; if (mpi_world_size == 2) size[1] = _N / 2; else size[1] = 0; size[0] = N - size[1]; outH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; outW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if (mpi_rank == 0 && mpi_world_size == 2) { MPI_Isend(&input[size[0]*C*H*W], size[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); MPI_Isend(filter, K*C*R*S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); } else if (mpi_world_size == 2) { alloc_tensor(&input, size[1], C, H, W); alloc_tensor(&output, size[1], K, outH, outW); alloc_tensor(&filter, K, C, R, S); MPI_Recv(input, size[1]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); MPI_Recv(filter, K*C*R*S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); } /* #pragma omp parallel for num_threads(num_threads) schedule(dynamic) for (int n = 0; n < size[mpi_rank]; ++n) { #pragma omp parallel for num_threads(num_threads) schedule(dynamic) for (int k = 0; k < K; ++k) { #pragma omp parallel for num_threads(num_threads) schedule(dynamic) for (int oh = 0; oh < outH; ++oh) { */ #pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic) for (int n = 0; n < size[mpi_rank]; ++n) { for (int k = 0; k < K; ++k) { for (int oh = 0; oh < outH; ++oh) { #pragma omp parallel for num_threads(num_threads) schedule(dynamic) for (int ow = 0; ow < outW; ++ow) { float o = 0.f; for (int c = 0; c < C; ++c) {// channel for (int r = 0; r < R; ++r) { //filter width for (int s = 0; s < S; ++s) { //filter height int h = oh * stride - pad + r * dilation; int w = ow * stride - pad + s * dilation; if (h < 0 || h >= H || w < 0 || w >= W) continue; float i = input[n * C * H * W + c * H * W + h * W + w]; float f = filter[k * C * R * S + c * R * S + r * S + s]; o += i * f; } } // r } // c output[n * K * outH * outW + k * outH * outW + oh * outW + ow] = o; if(n==0&&k==0&&oh==0&&ow==0); printf("output[%0][%0][%0][%0] : _value = %f\n",o); } //ow } // oh } // k } // n if (mpi_rank == 0 && mpi_world_size == 2) { MPI_Recv(&output[size[0]*K*outH*outW], size[1]*K*outH*outW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status); } else if(mpi_world_size == 2){ MPI_Isend(output, size[1]*K*outH*outW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request); } } #endif #if 0 void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { input = _input; output = _output; filter = _filter; outH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; outW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if (mpi_rank == 0) { for (int n = 0; n < N; ++n) { for (int k = 0; k < K; ++k) { for (int oh = 0; oh < outH; ++oh) { for (int ow = 0; ow < outW; ++ow) { float o = 0.f; for (int c = 0; c < C; ++c) { for (int r = 0; r < R; ++r) { for (int s = 0; s < S; ++s) { int h = oh * stride - pad + r * dilation; int w = ow * stride - pad + s * dilation; if (h < 0 || h >= H || w < 0 || w >= W) continue; float i = input[n * C * H * W + c * H * W + h * W + w]; float f = filter[k * C * R * S + c * R * S + r * S + s]; o += i * f; } } } output[n * K * outH * outW + k * outH * outW + oh * outW + ow] = o; } } } } } } #endif void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; int size[2]; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); if (mpi_world_size == 2) size[1] = _N / 2; else size[1] = 0; size[0] = N - size[1]; N=size[0]; int OH, OW; OH = (_H + 2 *_pad - _dilation * (_R - 1) -1) / _stride + 1; OW = (_W + 2 *_pad - _dilation * (_S - 1) -1) / _stride + 1; CUDA_CALL( cudaGetDeviceCount(&num_devices) ); //num_devices=2; printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Nbegin[i] = (N / num_devices) * i; Nend[i] = (N / num_devices) * (i + 1); } Nend[num_devices - 1] = N; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&input_d[i], (Nend[i] - Nbegin[i]) * C*H*W * sizeof(float)) ); CUDA_CALL( cudaMalloc(&filter_d[i],K * C*R*S * sizeof(float)) ); CUDA_CALL( cudaMalloc(&output_d[i], (Nend[i] - Nbegin[i]) * K*OH*OW * sizeof(float)) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { int OH, OW; int size[2]; MPI_Request request; MPI_Status status; if (mpi_world_size == 2) size[1] = _N / 2; else size[1] = 0; size[0] = _N - size[1]; OH = (_H + 2 *_pad - _dilation * (_R - 1) -1) / _stride + 1; OW = (_W + 2 *_pad - _dilation * (_S - 1) -1) / _stride + 1; // Download C matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMemcpy(output + Nbegin[i] * _K*OH*OW, output_d[i], (Nend[i] - Nbegin[i]) * _K*OH*OW* sizeof(float), cudaMemcpyDeviceToHost) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } if (mpi_rank == 0 && mpi_world_size == 2) { printf("%s %d IRecv size[1] %d %d \n",__func__,__LINE__,size[1],size[1]*K*outH*outW); MPI_Recv(&output[size[1]*K*outH*outW], size[1]*K*outH*outW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status); } else if(mpi_world_size == 2){ printf("%s %d ISend size[1] %d %d \n",__func__,__LINE__,size[1],size[1]*K*outH*outW); MPI_Isend(output, size[1]*K*outH*outW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request); } }