#include #include #include // cudaDeviceSynchronize() #include "convolution.h" #include //#include #include "util.h" #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 #define TS 8 static float *input, *output, *filter; static float *in_d[MAX_NUM_GPU], *out_d[MAX_NUM_GPU], *fil_d[MAX_NUM_GPU]; static int N, C, H, W; static int K, R, S; //static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; static int num_devices = 1; static int size[2]; static int NN[MAX_NUM_GPU]; //static int OH, OW; //void convolution( __global__ void conv( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { const int globalRow= blockDim.x * blockIdx.x + threadIdx.x; const int globalCol= blockDim.y * blockIdx.y + threadIdx.y; int OH, OW; // input = _input; // output = _output; // filter = _filter; OH = (_H + 2 * _pad - _dilation * (_R - 1) - 1) / _stride + 1; OW = (_W + 2 * _pad - _dilation * (_S - 1) - 1) / _stride + 1; int n,k,w; w=globalCol; n=w/(_K*OW); w=w-n*(_K*OW); k=w/OW; w=w-k*OW; int col=w; int row=globalRow; if(globalRow>=OH || globalCol >= _N*_K*OW) return; int start_row = row * _stride - _pad; int start_col = col * _stride - _pad; float o=0.0f; if (mpi_rank == 0) { for (int c = 0; c < _C; c++) { for (int i = 0; i < _R; i++) { for (int j = 0; j < _S; j++) { int h = start_row + i * _dilation; int w = start_col + j * _dilation; if(h<0 || w<0 || h>=_H || w<=_W) continue; float in=_input[n * _C * _H * _W + c * _H * W + h * _W + w]; float fil=_filter[k * _C * _R * _S + c * _R * _S + i * _S + j]; o += in * fil; } } } _output[n * _K * OH * OW + k * OH * OW + row*OW + col] = o; } } void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { int offset=0; MPI_Request request; MPI_Status status; input = _input; output = _output; filter = _filter; if (mpi_rank == 0 && mpi_world_size == 2 && size[1] !=0) { MPI_Isend(&input[size[0]*C*H*W], size[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); MPI_Isend(filter, _K*_C*_R*_S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); if(size[mpi_rank]>>(in_d[i], out_d[i], fil_d[i], NN[i],_C,_H,_W,_K,_R,_S,_pad,_dilation,_stride); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } offset=0; for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMemcpy(output+offset, out_d[i], NN[i]*K*OH*OW*sizeof(float), // (Mend[i] - Mbegin[i]) * K * sizeof(float), cudaMemcpyDeviceToHost) ); offset += NN[i]*K*OH*OW; } for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } if (mpi_rank == 0 && mpi_world_size == 2 && size[1] !=0) { MPI_Recv(&output[size[0]*K*OH*OW], size[1]*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status); } else if(mpi_rank ==1 && size[1] != 0) { MPI_Isend(output, size[1]*K*OH*OW, MPI_FLOAT,0,0,MPI_COMM_WORLD,&request); } } void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if(mpi_world_size==2 && _N>4) size[1]=_N/2; else size[1]=0; size[0]=N-size[1]; if(size[mpi_rank]