#include "util.h" #include "convolution.h" #include #include #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 //#define GPU_NUM 1 int num_devices = 0; #define OH_TILE_WIDTH 16 #define OW_TILE_WIDTH 16 static float *i_d[MAX_NUM_GPU]; static float *f_d[MAX_NUM_GPU]; static float *o_d[MAX_NUM_GPU]; static int Nbegin[MAX_NUM_GPU], Nend[MAX_NUM_GPU]; static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; static int mpi_chunk[2]; __global__ void cuconv( float *input, float *output, float *filter, int N, int C, int H, int W, int K, int R, int S, int OH, int OW, int pad, int dilation, int stride) { __shared__ float tile_filter[OH_TILE_WIDTH][OW_TILE_WIDTH]; int bx = blockIdx.x, by = blockIdx.y, nk = blockIdx.z; int tx = threadIdx.x, ty = threadIdx.y; int n = nk/K; int k = nk%K; int oh = by * OH_TILE_WIDTH + ty; int ow = bx * OW_TILE_WIDTH + tx; float o = 0.f; float Rchunk = (R + OH_TILE_WIDTH - 1)/OH_TILE_WIDTH; float Schunk = (S + OW_TILE_WIDTH - 1)/OW_TILE_WIDTH; int hpos = oh*stride - pad; int wpos = ow*stride - pad; int nCHW = n * C * H * W; for(int c = 0; c < C; ++c) { int cHW = c * H * W; for(int rtile = 0; rtile < Rchunk; ++rtile) { for(int stile = 0; stile < Schunk; ++stile) { int rpos = rtile*OH_TILE_WIDTH+ty; int spos = stile*OW_TILE_WIDTH+tx; if(rpos < R && spos < S) tile_filter[ty][tx] = filter[k*C*R*S + c*R*S + rpos*S + spos]; else tile_filter[ty][tx] = 0; __syncthreads(); int Rbegin = (dilation - hpos - 1)/dilation > rtile*OH_TILE_WIDTH ? (dilation - hpos - 1)/dilation : rtile*OH_TILE_WIDTH; int Sbegin = (dilation - wpos - 1)/dilation > stile*OW_TILE_WIDTH ? (dilation - wpos - 1)/dilation : stile*OW_TILE_WIDTH; int Rlimit = (H - hpos + dilation - 1)/dilation < R ? (H - hpos + dilation - 1)/dilation : R; int Slimit = (W - wpos + dilation - 1)/dilation < S ? (W - wpos + dilation - 1)/dilation : S; int Rend = (rtile+1)*OH_TILE_WIDTH < Rlimit ? (rtile+1)*OH_TILE_WIDTH : Rlimit; int Send = (stile+1)*OW_TILE_WIDTH < Slimit ? (stile+1)*OW_TILE_WIDTH : Slimit; if(oh < OH && ow < OW) for(int r = Rbegin; r < Rend; ++r) { for(int s = Sbegin; s < Send; ++s) { o += input[nCHW + cHW + (hpos + r * dilation) * W + (wpos + s * dilation)] * tile_filter[r-rtile*OH_TILE_WIDTH][s-stile*OW_TILE_WIDTH]; } } __syncthreads(); } } } if(oh < OH && ow < OW) output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; } void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { MPI_Request request; MPI_Status status; if (mpi_rank == 0) { input = _input; output = _output; filter = _filter; } if(mpi_world_size == 2) { if (mpi_rank == 0) { MPI_Isend(input+mpi_chunk[0]*C*H*W, mpi_chunk[1]*C*H*W, MPI_FLOAT, 1, 1000, MPI_COMM_WORLD, &request); MPI_Isend(filter, K*C*R*S, MPI_FLOAT, 1, 1001, MPI_COMM_WORLD, &request); } else { MPI_Recv(input, mpi_chunk[1]*C*H*W, MPI_FLOAT, 0, 1000, MPI_COMM_WORLD, &status); MPI_Recv(filter, K*C*R*S, MPI_FLOAT, 0, 1001, MPI_COMM_WORLD, &status); } } // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(i_d[i], input + Nbegin[i]*C*H*W, (Nend[i]-Nbegin[i])*C*H*W*sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(f_d[i], filter, K*C*R*S*sizeof(float), cudaMemcpyHostToDevice) ); } // Launch kernel on every GPU for (int i = 0; i < num_devices; i++) { dim3 blockDim(OW_TILE_WIDTH, OH_TILE_WIDTH, 1); dim3 gridDim((OW+OW_TILE_WIDTH-1)/OW_TILE_WIDTH, (OH+OH_TILE_WIDTH-1)/OH_TILE_WIDTH, K*(Nend[i]-Nbegin[i])); CUDA_CALL( cudaSetDevice(i) ); cuconv<<>>(i_d[i], o_d[i], f_d[i], Nend[i] - Nbegin[i], C, H, W, K, R, S, OH, OW, pad, dilation, stride); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(output + Nbegin[i]*K*OH*OW, o_d[i], (Nend[i]-Nbegin[i])*K*OH*OW*sizeof(float), cudaMemcpyDeviceToHost) ); } for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } if(mpi_world_size == 2) { if (mpi_rank == 0) { MPI_Recv(output+mpi_chunk[0]*K*OH*OW, mpi_chunk[1]*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status); } else { MPI_Isend(output, mpi_chunk[1]*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request); } } } void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); CUDA_CALL( cudaGetDeviceCount(&num_devices) ); CUDA_CALL( cudaDeviceSetCacheConfig(cudaFuncCachePreferL1) ); #if GPU_NUM num_devices = GPU_NUM; #endif printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if(mpi_world_size == 2) { mpi_chunk[0] = (N+1)/2; mpi_chunk[1] = N - mpi_chunk[0]; if (mpi_rank != 0) { alloc_tensor(&input, mpi_chunk[mpi_rank], C, H, W); alloc_tensor(&output, mpi_chunk[mpi_rank], K, OH, OW); alloc_tensor(&filter, K, C, R, S); } } else { mpi_chunk[0] = N; } // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Nbegin[i] = (mpi_chunk[mpi_rank] / num_devices) * i; Nend[i] = (mpi_chunk[mpi_rank] / num_devices) * (i + 1); } Nend[num_devices - 1] = mpi_chunk[mpi_rank]; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&i_d[i], (Nend[i]-Nbegin[i])*C*H*W*sizeof(float)) ); CUDA_CALL( cudaMalloc(&f_d[i], K*C*R*S*sizeof(float)) ); CUDA_CALL( cudaMalloc(&o_d[i], (Nend[i]-Nbegin[i])*K*OH*OW*sizeof(float)) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { }