//#include "mat_mul.h" #include #include #include #include "util.h" #include "convolution.h" #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define TS 8 //#define WPT 8 //#define RTS (TS/WPT) #define MAX_NUM_GPU 4 static float *input, *output, *filter; static float *in_d[MAX_NUM_GPU], *out_d[MAX_NUM_GPU], *fil_d[MAX_NUM_GPU]; static int N, C, H, W; static int K, R, S; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; static int num_devices = 1; static int size[2]; static int NN[MAX_NUM_GPU]; static int OH, OW; //int num_devices = 4; __global__ void conv(float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { //int i = blockDim.x * blockIdx.x + threadIdx.x; //int j = blockDim.y * blockIdx.y + threadIdx.y; //const int row = threadIdx.x; //const int col = threadIdx.y; const int globalRow = blockDim.x * blockIdx.x + threadIdx.x; const int globalCol = blockDim.y * blockIdx.y + threadIdx.y; int OH, OW; // const int large_M = Mend[num_devices]-Mbegin[0]; OH = (_H + 2 * _pad - _dilation * (_R - 1) - 1) / _stride + 1; OW = (_W + 2 * _pad - _dilation * (_S - 1) - 1) / _stride + 1; int n, k, w; w = globalCol; n = w / (_K * OW); w = w - n * (_K * OW); k = w / OW; w = w - k * OW; int col = w; int row = globalRow; if (globalRow >= OH || globalCol >= _N*_K*OW) return; int start_row = row * _stride - _pad; int start_col = col * _stride - _pad; float o = 0.0f; for(int c = 0; c < _C; c++){ for(int i =0; i < _R; i++){ for(int j=0; j < _S ; j++){ int h = start_row + i*_dilation; int w = start_col + j*_dilation; if (h<0 || w<0 || h >= _H || w>= _W) continue; float in = _input[n*_C*_W*_H + c*_W*_H + h*_W + w]; float fil = _filter[k*_C*_R*_S + c*_R*_S + i*_S + j]; o += in * fil; } } } _output[n*_K*OH*OW + k*OH*OW + row*OW + col] = o; } // Array of device (GPU) pointers //static float *a_d[MAX_NUM_GPU]; //static float *b_d[MAX_NUM_GPU]; //static float *c_d[MAX_NUM_GPU]; //static int M, N, K; //static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU]; void convolution(float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { int offset = 0; MPI_Request request; MPI_Status status; input = _input; output = _output; filter = _filter; if(mpi_rank == 0 && mpi_world_size == 2 && size[1] != 0){ MPI_Isend(&input[size[0]*C*H*W], size[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); MPI_Isend(filter, _K*_C*_R*_S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); if(size[mpi_rank]>>(in_d[i], out_d[i], fil_d[i], NN[i], _C, _H, _W, _K, _R, _S, _pad, _dilation, _stride); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i =0; i < num_devices; i++){ CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } offset = 0; for(int i =0; i < num_devices; i++){ CUDA_CALL( cudaSetDevice(i)); CUDA_CALL( cudaMemcpy(output + offset, out_d[i], NN[i]*K*OH*OW*sizeof(float),cudaMemcpyDeviceToHost)); offset += NN[i]*K*OH*OW; } for(int i =0; i < num_devices; i++){ CUDA_CALL( cudaSetDevice(i)); CUDA_CALL( cudaDeviceSynchronize()); } if(mpi_rank ==0 && mpi_world_size == 2 && size[1] != 0){ MPI_Recv(&output[size[0]*K*OH*OW], size[1]*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status); }else if(mpi_rank == 1 && size[1] != 0){ MPI_Isend(output, size[1]*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request); } } void convolution_init(int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if (mpi_world_size == 2 && _N > 4) size[1] = _N/2; else size[1] = 0; size[0] = N - size[1]; if (size[mpi_rank] < MAX_NUM_GPU){ num_devices = size[mpi_rank]; for (int i = 0; i < size[mpi_rank]; i++){ NN[i]=1;} } else{ num_devices = MAX_NUM_GPU; int quotient = size[mpi_rank] / MAX_NUM_GPU; int remain = size[mpi_rank] % MAX_NUM_GPU; for (int i = 0; i < MAX_NUM_GPU; i++){ NN[i] = quotient; if (i < remain){ NN[i]++;} } } for (int i = 0 ; i < num_devices ; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&in_d[i], NN[i]*C*H*W*sizeof(float)) ); CUDA_CALL( cudaMalloc(&out_d[i], NN[i]*K*OH*OW*sizeof(float)) ); CUDA_CALL( cudaMalloc(&fil_d[i], K*C*R*S*sizeof(float)) ); } } void convolution_final(int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { }