#include "convolution.h" #include #include #include #include #define MAX_NUM_GPU 4 #define MAX_NUM_NODE 2 #define TS 32 #define WPT 8 #define RTS TS/WPT int num_devices = 0; #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } void my_alloc_tensor(float **t, int D0, int D1, int D2, int D3) { *t = (float *) aligned_alloc(32, sizeof(float) * D0 * D1 * D2 * D3); if (*t == NULL) { printf("Failed to allocate memory for matrix.\n"); exit(0); } } __global__ void sgemm(float *input, float *filter, float *output, int N, int C, int H, int W, int K, int R, int S, int pad, int dilation, int stride) { int n = blockIdx.x; int k = blockIdx.y; int oh = blockIdx.z; int ow = threadIdx.x; const int OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; const int OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; float o = 0.f; for (int c = 0; c < C; ++c) { for (int r = 0; r < R; ++r) { for (int s = 0; s < S; ++s) { int h = oh * stride - pad + r * dilation; int w = ow * stride - pad + s * dilation; if (h < 0 || h >= H || w < 0 || w >= W) continue; float i = input[n * C * H * W + c * H * W + h * W + w]; float f = filter[k * C * R * S + c * R * S + r * S + s]; o += i * f; } } } output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; } static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; // Array of device (GPU) pointers static float *input_d[MAX_NUM_GPU]; static float *output_d[MAX_NUM_GPU]; static float *filter_d[MAX_NUM_GPU]; static int Nbegin[MAX_NUM_NODE], Nend[MAX_NUM_NODE]; static int begin[MAX_NUM_GPU], end[MAX_NUM_GPU]; //static int split_N[MAX_NUM_GPU]; void convolution(float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { input = _input; output = _output; filter = _filter; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if (mpi_rank >= mpi_world_size) return; //if(mpi_rank != 0){ // my_alloc_tensor(&input, N, C, H, W); // my_alloc_tensor(&output, N, K, OH, OW); // my_alloc_tensor(&filter, K, C, R, S); //} if (mpi_rank != 0){ input = (float *) aligned_alloc(32, sizeof(float) * N*C*H*W); filter = (float *) aligned_alloc(32, sizeof(float) * K*C*R*S); output = (float *) aligned_alloc(32, sizeof(float) * N*K*OH*OW); } // Scatter A if (mpi_rank == 0) { for (int i=1; i>>(input_d[i], filter_d[i], output_d[i], end[i]-begin[i], C, H, W, K, R, S, pad, dilation, stride); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } // Download C matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(output+begin[i]*K*OH*OW, output_d[i], (end[i]-begin[i])*K*OH*OW*sizeof(float), cudaMemcpyDeviceToHost) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } if(mpi_rank == 0){ for(int i=1; i= mpi_world_size) return; CUDA_CALL( cudaGetDeviceCount(&num_devices) ); printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each GPU for (int i = 0; i < mpi_world_size; i++) { Nbegin[i] = (N / mpi_world_size) * i; Nend[i] = (N / mpi_world_size) * (i + 1); } Nend[mpi_world_size - 1] = N; // Seupt problem size for each GPU for (int i = 0; i < num_devices; i++) { begin[i] = Nbegin[mpi_rank] + (Nend[mpi_rank]-Nbegin[mpi_rank])/num_devices*i; end[i] = Nbegin[mpi_rank] + (Nend[mpi_rank]-Nbegin[mpi_rank])/num_devices*(i+1); } end[num_devices - 1] = Nend[mpi_rank]; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&input_d[i], (end[i]-begin[i])*C*H*W*sizeof(float)) ); CUDA_CALL( cudaMalloc(&filter_d[i], K*C*R*S*sizeof(float)) ); CUDA_CALL( cudaMalloc(&output_d[i], (end[i]-begin[i])*K*OH*OW*sizeof(float)) ); } } void convolution_final(int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { // Do any post-matmul cleanup work here. if (mpi_rank >= mpi_world_size) return; }