#include "convolution.h" #include #include #include #include "util.h" #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 #define TS 4 static float *input, *output, *filter; static float *in_d[MAX_NUM_GPU], *out_d[MAX_NUM_GPU], *fil_d[MAX_NUM_GPU]; static int N, C, H, W; static int K, R, S; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; static int size[2]; static int NN[MAX_NUM_GPU]; static int OH, OW; int num_devices = 1; __global__ void conv( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride, int OH, int OW) { const int globalRow = blockDim.x * blockIdx.x + threadIdx.x ; const int globalCol = blockDim.y * blockIdx.y + threadIdx.y; int KK = blockDim.z * blockIdx.z +threadIdx.z; //int OH, OW; //OH = (_H + 2 * _pad - _dilation * (_R - 1) - 1) / _stride + 1; //OW = (_W + 2 * _pad - _dilation * (_S - 1) - 1) / _stride + 1; if (KK >= _K) return; int n, w; w = globalCol; n = w / OW; w = w - n * OW; int col = w; int row = globalRow; if (globalRow >= OH || globalCol >= _N*OW) return; int start_row = row * _stride - _pad; int start_col = col * _stride - _pad; float o = 0.0f; for (int c = 0 ; c < _C ; c++) { for (int i = 0 ; i < _R ; i++) { for (int j = 0 ; j < _S ; j++) { int h = start_row + i * _dilation; int w = start_col + j * _dilation; if (h < 0 || w < 0 || h >= _H || w >= _W) continue; float in = _input[n*_C*_W*_H + c*_W*_H + h*_W + w]; float fil = _filter[KK*_C*_R*_S + c*_R*_S + i*_S + j]; o += in * fil; } } } _output[n*_K*OH*OW + KK*OH*OW + row*OW + col] = o; } void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { int offset = 0; MPI_Request request; MPI_Status status; input = _input; output = _output; filter = _filter; if (mpi_rank == 0 && mpi_world_size == 2 && size[1] != 0) { MPI_Isend(&input[size[0]*C*H*W], size[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); MPI_Isend(filter, K*C*R*S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); if(size[mpi_rank] < MAX_NUM_GPU) { num_devices = size[mpi_rank]; } } else if (mpi_rank == 1 && size[mpi_rank] != 0) { alloc_tensor(&input, size[1], C, H, W); alloc_tensor(&output, size[1], K, OH, OW); alloc_tensor(&filter, _K, _C, _R, _S); MPI_Recv(input, size[1]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); MPI_Recv(filter, _K*_C*_R*_S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); if(size[mpi_rank] < MAX_NUM_GPU) { num_devices = size[mpi_rank]; } } offset = 0; for(int i = 0; i < num_devices; i++) { CUDA_CALL (cudaMemcpy( in_d[i], input + offset, NN[i]*C*H*W*sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL (cudaMemcpy( fil_d[i], filter, K*C*R*S*sizeof(float), cudaMemcpyHostToDevice) ); offset += NN[i] * C * H * W; } for (int i = 0; i < num_devices; i++) { CUDA_CALL ( cudaDeviceSynchronize() ); } for (int i = 0; i < num_devices; i++) { //dim3 gridDim( (OH+TS-1)/TS, (NN[i]*K*OW + TS - 1)/TS, 1); //dim3 blockDim( TS, TS, 1); dim3 gridDim( (OH+TS-1)/TS, (NN[i]*K*OW + TS - 1)/TS, (K+TS-1)/TS); dim3 blockDim( TS, TS, TS); CUDA_CALL ( cudaSetDevice(i) ); conv <<>> (in_d[i], out_d[i], fil_d[i], NN[i], _C, _H, _W, _K, _R, _S, _pad, _dilation, _stride, OH, OW); } for (int i = 0; i < num_devices; i++) { CUDA_CALL ( cudaSetDevice(i) ); CUDA_CALL ( cudaDeviceSynchronize() ); } offset = 0; for (int i = 0; i < num_devices; i++) { CUDA_CALL ( cudaSetDevice(i) ); CUDA_CALL ( cudaMemcpy(output + offset, out_d[i], NN[i]*K*OH*OW * sizeof(float), cudaMemcpyDeviceToHost) ); offset += NN[i]*K*OH*OW; } for (int i = 0; i < num_devices; i++) { CUDA_CALL ( cudaSetDevice(i) ); CUDA_CALL ( cudaDeviceSynchronize() ); } if (mpi_rank == 0 && mpi_world_size == 2 && size[1] != 0) { MPI_Recv(&output[size[0]*K*OH*OW], size[1]*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status); } else if (mpi_rank == 1 && size[1] != 0) { MPI_Isend(output, size[1]*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request); } } void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; //printf("debug: mpi_world_size=%d\n",mpi_world_size); //printf("debug: _N=%d\n",_N); if(mpi_world_size == 2 && _N > 4) size[1] = _N / 2; else size[1] = 0; size[0] = N - size[1]; //printf("debug: size[0]=%d\n",size[0]); //printf("debug: size[1]=%d\n",size[1]); if(size[mpi_rank] < MAX_NUM_GPU) { num_devices = size[mpi_rank]; for(int i = 0; i