#include "util.h" #include #include "convolution.h" #include #include #include #define TS 8 #define MAX_NUM_GPU 4 #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; int num_devices = 0; __global__ void conv( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { const int globalRow = blockDim.x * blockIdx.x + threadIdx.x; const int globalCol = blockDim.y * blockIdx.y + threadIdx.y; int OH, OW; OH = (_H + 2 * _pad - _dilation * (_R - 1) - 1) / _stride + 1; OW = (_W + 2 * _pad - _dilation * (_S - 1) - 1) / _stride + 1; int n, k, w; w = globalCol; n = w / (_K*OW); w = w - n * (_K*OW); k = w / OW; w = w - k*OW; int col = w; int row = globalRow; if (globalRow >= OH || globalCol >= _N*_K*OW) return; int start_row = row * _stride - _pad; int start_col = col * _stride - _pad; float o = 0.0f; for (int c = 0; c < _C; c++) { for (int i = 0; i < _R; i++) { for (int j = 0; j < _S; j++) { int h = start_row + i * _dilation; int w = start_col + j * _dilation; if (h <0 || w <0 || h >=_H || w >=_W) continue; float in = _input[n*_C*_W*_H + c*_W*_H + h*_W + w]; float fil = _filter[k*_C*_R*_S + c*_R*_S+ i*_S +j]; o += in * fil; } } } _output[n*_K*OH*OW + k*OH*OW + row*OW + col] = o; } static float *in_d[MAX_NUM_GPU]; static float *out_d[MAX_NUM_GPU]; static float *fil_d[MAX_NUM_GPU]; static int Nbegin[MAX_NUM_GPU], Nend[MAX_NUM_GPU]; int size[2]; void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { //CUDA_CALL( cudaGetDeviceCount(&num_devices) ); MPI_Request request; MPI_Status status; input = _input; output = _output; filter = _filter; if (mpi_world_size == 2) size[1] = _N/2; else size[1] = 0; size[0] = _N-size[1]; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if (mpi_rank == 0 && mpi_world_size == 2) { MPI_Isend(&input[size[0]*C*H*W], size[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); MPI_Isend(filter, K*C*R*S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); } else if (mpi_world_size == 2) { alloc_tensor(&input, size[1], C, H, W); alloc_tensor(&output, size[1], K, OH, OW); alloc_tensor(&filter, K, C, R, S); MPI_Recv(input, size[1]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); MPI_Recv(filter, K*C*R*S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); } int n = size[mpi_rank]; CUDA_CALL( cudaGetDeviceCount(&num_devices) ); for (int i = 0; i < num_devices; i++) { Nbegin[i] = (n/ num_devices) * i; Nend[i] = (n/ num_devices) * (i + 1); } Nend[num_devices - 1] = n; for (int i = 0; i < num_devices; i++) { } for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&in_d[i], (Nend[i] - Nbegin[i]) * _C * _H * _W * sizeof(float)) ); CUDA_CALL( cudaMalloc(&out_d[i], (Nend[i] - Nbegin[i]) * _K * OH * OW * sizeof(float)) ); CUDA_CALL( cudaMalloc(&fil_d[i], _K * _C * _R * _S * sizeof(float)) ); } for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(in_d[i], input + Nbegin[i] * _C*_H*_W, (Nend[i] - Nbegin[i]) * _C*_H*_W * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(fil_d[i], filter, _K * _C*_R*_S * sizeof(float), cudaMemcpyHostToDevice) ); } for (int i = 0; i < num_devices; i++) { dim3 gridDim((OH+TS-1)/TS, ((Nend[i] - Nbegin[i])*_K*OW+TS-1)/TS,1); dim3 blockDim(TS,TS,1); CUDA_CALL( cudaSetDevice(i) ); conv<<>>(in_d[i], out_d[i], fil_d[i], Nend[i] - Nbegin[i], _C,_H,_W,_K,_R,_S,_pad,_dilation,_stride); } } void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { MPI_Request request; MPI_Status status; for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(output + (Nbegin[i] * _K*OH*OW), out_d[i], (Nend[i] - Nbegin[i]) * _K*OH*OW * sizeof(float), cudaMemcpyDeviceToHost) ); } if (mpi_rank == 0 && mpi_world_size == 2) { MPI_Recv(&output[size[0]*K*OH*OW], size[1]*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status); } else if (mpi_world_size == 2) { MPI_Isend(output, size[1]*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request); } }