#include "convolution.h" #include "util.h" #include #include #include static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; static int nstart, nend, nlen; static MPI_Request request; static MPI_Status status; #define NUM_THREADS_PER_NODE 40 #define RTILE_SIZE 2 #define STILE_SIZE 64 #define KTILE_SIZE 16 #define OHTILE_SIZE 4 #define CTILE_SIZE 8 #define OWTILE_SIZE 32 #define UNROLL_SIZE 4 #define min(A, B) (((A) > (B)) ? (B) : (A)) #define H_W (H * W) #define C_H_W (C * H * W) #define R_S (R * S) #define C_R_S (C * R * S) #define OH_OW (OH * OW) #define K_OH_OW (K * OH * OW) void convolution_omp(void) { // int ss = STILE_SIZE; // int rs = RTILE_SIZE; int cs = CTILE_SIZE; // int ohs = OHTILE_SIZE; // int ows = OWTILE_SIZE; // int ks = KTILE_SIZE; // printf("Node #%d, (nstart, nend, nlen): (%d, %d, %d)\n", mpi_rank, nstart, nend, nlen); // for(int i = 0; i < 10; i++) // { // printf("input[%d]: %f\n", i, input[i]); // } for (int n = 0; n < nlen; ++n) { #pragma omp parallel for collapse(2) schedule(dynamic) for (int k = 0; k < K; ++k) { for (int oh = 0; oh < OH; ++oh) { for (int ow = 0; ow < OW; ++ow) { float o = 0.f; for (int ctile = 0; ctile < C; ctile += cs) { for (int r = 0; r < R; ++r) { for (int s = 0; s < S; ++s) { int climit = min(ctile + cs, C); for (int c = ctile; c < climit; ++c) { int h = oh * stride - pad + r * dilation; int w = ow * stride - pad + s * dilation; if (h < 0 || h >= H || w < 0 || w >= W) continue; float i = input[n * C * H * W + c * H * W + h * W + w]; float f = filter[k * C * R * S + c * R * S + r * S + s]; o += i * f; } } } output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; } } } } } } void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { if (mpi_rank == 0) { input = _input; output = _output; filter = _filter; } if (mpi_world_size == 1) { convolution_omp(); } else { if (mpi_rank == 0) { int dest = 1; nstart = N / mpi_world_size * dest + min(dest, N % mpi_world_size); nend = N / mpi_world_size * (dest + 1) + min(dest + 1, N % mpi_world_size); nlen = nend - nstart; MPI_Isend(&input[nstart * C_H_W], nlen * C_H_W, MPI_FLOAT, dest, 1, MPI_COMM_WORLD, &request); MPI_Isend(filter, K * C_R_S, MPI_FLOAT, dest, 1, MPI_COMM_WORLD, &request); nstart = N / mpi_world_size * mpi_rank + min(mpi_rank, N % mpi_world_size); nend = N / mpi_world_size * (mpi_rank + 1) + min(mpi_rank + 1, N % mpi_world_size); nlen = nend - nstart; // printf("node #%d (nstart, nend, nlen): (%d, %d, %d) Send: %d B\n", mpi_rank, nstart, nend, nlen, nlen * C_H_W); // printf("node #%d (nstart, nend, nlen): (%d, %d, %d) Send: %d B\n", mpi_rank, nstart, nend, nlen, N * C_R_S); } else { int source = 0; // printf("node #%d (nstart, nend, nlen): (%d, %d, %d) Recv: %d B, input: %p\n", mpi_rank, nstart, nend, nlen, nlen * C_H_W, input); MPI_Recv(input, nlen * C_H_W, MPI_FLOAT, source, 1, MPI_COMM_WORLD, &status); // printf("node #%d (nstart, nend, nlen): (%d, %d, %d) Recv: %d B, filter: %p\n", mpi_rank, nstart, nend, nlen, N * C_R_S, filter); MPI_Recv(filter, K * C_R_S, MPI_FLOAT, source, 1, MPI_COMM_WORLD, &status); zero_tensor(output, nlen, K, OH, OW); } convolution_omp(); if (mpi_rank == 0) { int source = 1; nstart = N / mpi_world_size * source + min(source, N % mpi_world_size); nend = N / mpi_world_size * (source + 1) + min(source + 1, N % mpi_world_size); nlen = nend - nstart; MPI_Recv(&output[nstart * K_OH_OW], nlen * K_OH_OW, MPI_FLOAT, source, 1, MPI_COMM_WORLD, &status); } else { int dest = 0; MPI_Isend(output, nlen * K_OH_OW, MPI_FLOAT, dest, 1, MPI_COMM_WORLD, &request); } } } void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; omp_set_num_threads(NUM_THREADS_PER_NODE); MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if (mpi_world_size == 1) { // Only 1 node is usable // Set start and end index for node #0 nstart = 0; nend = N; nlen = nend - nstart; } else { // 2 nodes are usable if (mpi_rank == 0) { int dest = 1; nstart = N / mpi_world_size * dest + min(dest, N % mpi_world_size); nend = N / mpi_world_size * (dest + 1) + min(dest + 1, N % mpi_world_size); // Send start and end index to node #1 MPI_Isend(&nstart, 1, MPI_INT, dest, 1, MPI_COMM_WORLD, &request); MPI_Isend(&nend, 1, MPI_INT, dest, 1, MPI_COMM_WORLD, &request); nstart = N / mpi_world_size * mpi_rank + min(mpi_rank, N % mpi_world_size); nend = N / mpi_world_size * (mpi_rank + 1) + min(mpi_rank + 1, N % mpi_world_size); nlen = nend - nstart; } else { int source = 0; // Receive start and end index from node #0 MPI_Recv(&nstart, 1, MPI_INT, source, 1, MPI_COMM_WORLD, &status); MPI_Recv(&nend, 1, MPI_INT, source, 1, MPI_COMM_WORLD, &status); nlen = nend - nstart; alloc_tensor(&input, nlen, C, H, W); alloc_tensor(&output, nlen, K, OH, OW); alloc_tensor(&filter, K, C, R, S); } } } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { return; }